Browsing by Subject "Critical coupling"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access High-Q silicon-on-insulator optical rib waveguide racetrack resonators(Optical Society of American (OSA), 2005) Kiyat I.; Aydınlı, Atilla; Dagli, N.In this work, detailed design and realization of high quality factor (Q) racetrack resonators based on silicon-on-insulator rib waveguides are presented. Aiming to achieve critical coupling, suitable waveguide geometry is determined after extensive numerical studies of bending loss. The final design is obtained after coupling factor calculations and estimation of propagation loss. Resonators with quality factors (Q) as high as 119000 has been achieved, the highest Q value for resonators based on silicon-on-insulator rib waveguides to date with extinction ratios as large as 12 dB. © 2005 Optical Society of America.Item Open Access A narrow-band multi-resonant metamaterial in near-ir(MDPI AG, 2020) Ali, Farhan; Aksu, S.We theoretically investigate a multi-resonant plasmonic metamaterial perfect absorber operating between 600 and 950 nm wavelengths. The presented device generates 100% absorption at two resonance wavelengths and delivers an ultra-narrow band (sub-20 nm) and high quality factor resonance. The studied perfect absorber is a metal–insulator–metal configuration where a thin MgF spacer is sandwiched between an optically thick gold layer and uniformly patterned gold circular nanodisc antennas. The localized and propagating nature of the plasmonic resonances are characterized and confirmed theoretically. The origin of the perfect absorption is investigated using the impedance matching and critical coupling phenomenon. We calculate the effective impedance of the perfect absorber and confirm the matching with the free space impedance. We also investigate the scattering properties of the top antenna layer and confirm the minimized reflection at resonance wavelengths by calculating the absorption and scattering cross sections. The excitation of plasmonic resonances boost the near-field intensity by three orders of magnitude which enhances the interaction between the metamaterial surface and the incident energy. The refractive index sensitivity of the perfect absorber could go as high as nm/RIU. The presented optical characteristics make the proposed narrow-band multi-resonant perfect absorber a favorable platform for biosensing and contrast agent based bioimaging.Item Open Access Tapered nanoscale chalcogenide fibers directly drawn from bulk glasses as optical couplers for high-index resonators(OSA - The Optical Society, 2017) Aktaş, O.; Bayındır, MehmetWe report production of air-clad tapered chalcogenide fibers by directly drawing bulk glasses between cleaved tips of tapered silica fibers. Exploiting these tapered fibers with nanoscale waists as evanescent optical couplers, we demonstrate phase-matched coupling of light into on-chip whispering gallery mode chalcogenide microresonators with coupling efficiencies as high as 95%. To the best of our knowledge, this is the first-time demonstration of critical coupling into high-index microresonators by using high-index tapered fibers. The tapered chalcogenide fibers can also be utilized as optical couplers for microresonators made of various high-index materials, as well as for nonlinear optical applications.