Browsing by Subject "Cramer-Rao bound (CRB)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access ECRB-based optimal parameter encoding under secrecy constraints(Institute of Electrical and Electronics Engineers, 2018) Göken, Çağrı; Gezici, SinanIn this paper, optimal deterministic encoding of a scalar parameter is investigated in the presence of an eavesdropper. The aim is to minimize the expectation of the conditional Cramér-Rao bound at the intended receiver while keeping the mean-squared error (MSE) at the eavesdropper above a certain threshold. First, optimal encoding functions are derived in the absence of secrecy constraints for any given prior distribution on the parameter. Next, an optimization problem is formulated under a secrecy constraint and various solution approaches are proposed. Also, theoretical results on the form of the optimal encoding function are provided under the assumption that the eavesdropper employs a linear minimum mean-squared error (MMSE) estimator. Numerical examples are presented to illustrate the theoretical results and to investigate the performance of the proposed solution approaches.Item Open Access Range estimation in multicarrier systems in the presence of interference: performance limits and optimal signal design(IEEE, 2011) Karisan, Y.; Dardari, D.; Gezici, Sinan; D'Amico, A. A.; Mengali, U.Theoretical limits on time-of-arrival (equivalently, range) estimation are derived for multicarrier systems in the presence of interference. Specifically, closed-form expressions are obtained for Cramer-Rao bounds (CRBs) in various scenarios. In addition, based on CRB expressions, an optimal power allocation (or, spectrum shaping) strategy is proposed. This strategy considers the constraints not only from the sensed interference level but also from the regulatory emission mask. Numerical results are presented to illustrate the improvements achievable with the optimal power allocation scheme, and a maximum likelihood time-of-arrival estimation algorithm is studied to assess the effects of the proposed approach in practical estimators.