Browsing by Subject "Couplings"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A multiscale method to analyze the deterioration due to alkali silica reaction considering the effects of temperature and relative humidity(International Center for Numerical Methods in Engineering, 2013) Wu, T.; Temizer I.; Wriggers P.This work presents a three-dimensional multiscale framework to investigate the deterioration resulting from alkali silica reaction (ASR) in the concrete. In this contribution, 3D micro-CT scan of hardened cement paste (HCP) and aggregates with a random distribution embedded in a homogenized cement paste matrix represent the microscale and mesoscale of the concrete respectively. A 3D hydro-chemo-thermo-mechanical model based on staggered method is developed at the mesoscale of the concrete, yet taking into account the deterioration at the microscale due to ASR.Item Open Access Quantum information processing in solid states: A critique of two-level approximation(World Scientific Publishing Co., 2005) Savran K.; Hakioğlu T.We examine the effect of multilevels on decoherence and dephasing properties of a quantum system consisting of a non-ideal two level subspace, identified as the qubit and a finite set of higher energy levels above this qubit subspace. The whole system is under interaction with an environmental bath through a Caldeira-Leggett type coupling. The model that we use is an rf-SQUID under macroscopic quantum coherence and coupled inductively to a flux noise characterized by an environmental spectrum. The model interaction can generate dipole couplings which can be appreciable for a number of high levels. The decoherence properties of the qubit subspace is examined numerically using the master equation formalism of the system’s reduced density matrix. We numerically examine the relaxation and dephasing times as the environmental frequency spectrum, and the multilevel system parameters are varied at zero temperature. We observe that, these time scales receive contribution from all available energies in the noise spectrum (even well above the system’s energy scales) stressing the dominant role played by the non-resonant (virtual) transitions. The relaxation and dephasing times calculated, strongly depend on the number of levels within the range of levels for which appreciable couplings are produced. Under the influence of these effects, we remark that the validity of the two level approximation is restricted not by the temperature but by these dipole couplings as well as the availability of the environmental modes at low temperatures. © 2005 by World Scientific Publishing Co. Pte. Ltd.