Browsing by Subject "Coulomb interactions"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Fano effect in a double T-shaped interferometer(Springer, 2009) Moldoveanu, V.; Dinu, I. V.; Tanatar, BilalWe study the coherent transport in a one-dimensional lead with two side-coupled quantum dots using the Keldysh's Green function formalism.The effect of the interdot Coulomb interaction is taken into account by computing the firstand second order contributions to the self-energy.We show that the Fano interference due to the resonance of one dotis strongly affected by the fixed parameters that characterize the second dot. If the second dot is tuned close to resonance an additionalpeak develops between the peak and dip of the Fano line shape of the current. In contrast, when the second dotis off-resonance and its occupation number is close to unity the interdot Coulomb interaction merely shifts the Fano line and no other maxima appear.The system we consider is more general than the single-dot interferometer studied experimentally by Kobayashi et al. [Phys. Rev. B 70, 035319 (2004)] and may be used for controlling quantum interference and studying decoherence effects in mesoscopic transport.Item Open Access A self-consistent microscopic model of Coulomb interaction in a bilayer system as an origin of Drag Effect Phenomenon(Elsevier B.V., 2008) Güven, K.; Siddiki, A.; Krishna, P. M.; Hakioǧlu T.In this work we implement the self-consistent Thomas-Fermi model that also incorporates a local conductivity model to an electron-electron bilayer system, in order to describe novel magneto-transport properties such as the Drag Phenomenon. The model can successfully account for the poor screening of the potential within the incompressible strips and its impact on the inter-layer Coulomb interaction. An externally applied current in the active layer results in the tilting of the Landau levels and built-up of a Hall potential across the layer, which, in turn, induces a tilted potential profile in the passive layer as well. We investigate the effect of the current intensity, temperature, magnetic field, and unequal density of layers on the self-consistent density and potential profiles of the bilayer system.