Browsing by Subject "Cost reduction"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Hypergraph-theoretic partitioning models for parallel web crawling(Springer, London, 2012) Türk, Ata; Cambazoğlu, B. Barla; Aykanat, CevdetParallel web crawling is an important technique employed by large-scale search engines for content acquisition. A commonly used inter-processor coordination scheme in parallel crawling systems is the link exchange scheme, where discovered links are communicated between processors. This scheme can attain the coverage and quality level of a serial crawler while avoiding redundant crawling of pages by different processors. The main problem in the exchange scheme is the high inter-processor communication overhead. In this work, we propose a hypergraph model that reduces the communication overhead associated with link exchange operations in parallel web crawling systems by intelligent assignment of sites to processors. Our hypergraph model can correctly capture and minimize the number of network messages exchanged between crawlers. We evaluate the performance of our models on four benchmark datasets. Compared to the traditional hash-based assignment approach, significant performance improvements are observed in reducing the inter-processor communication overhead. © 2012 Springer-Verlag London Limited.Item Open Access Memory resident parallel inverted index construction(Springer, London, 2012) Küçükyılmaz, Tayfun; Türk, Ata; Aykanat, CevdetAdvances in cloud computing, 64-bit architectures and huge RAMs enable performing many search related tasks in memory.We argue that term-based partitioned parallel inverted index construction is among such tasks, and provide an efficient parallel framework that achieves this task. We show that by utilizing an efficient bucketing scheme we can eliminate the need for the generation of a global index and reduce the communication overhead without disturbing balancing constraint. We also propose and investigate assignment schemes that can further reduce communication overheads without disturbing balancing constraints. The conducted experiments indicate promising results. © 2012 Springer-Verlag London Limited.Item Open Access Theoretical limits of the multistacked 1-D and 2-D microstructured inorganic solar cells(SPIE, 2015-08) Yengel, Emre; Karaağaç, H.; Logeeswaran, V. J.; İslam, M. S.Recent studies in monocrystalline semiconductor solar cells are focused on mechanically stacking multiple cells from different materials to increase the power conversion efficiency. Although, the results show promising increase in the device performance, the cost remains as the main drawback. In this study, we calculated the theoretical limits of multistacked 1D and 2D microstructered inorganic monocrstalline solar cells. This system is studied for Si and Ge material pair. The results show promising improvements in the surface reflection due to enhanced light trapping caused by photon-microstructures interactions. The theoretical results are also supported with surface reflection and angular dependent power conversion efficiency measurements of 2D axial microwall solar cells. We address the challenge of cost reduction by proposing to use our recently reported mass-manufacturable fracture-transfer- printing method which enables the use of a monocrystalline substrate wafer for repeated fabrication of devices by consuming only few microns of materials in each layer of devices. We calculated thickness dependent power conversion efficiencies of multistacked Si/Ge microstructured solar cells and found the power conversion efficiency to saturate at %26 with a combined device thickness of 30 μm. Besides having benefits of fabricating low-cost, light weight, flexible, semi-transparent, and highly efficient devices, the proposed fabrication method is applicable for other III-V materials and compounds to further increase the power conversion efficiency above 35% range. © 2015 SPIE.