Browsing by Subject "Coset coding"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access On secure communications over gaussian wiretap channels via finite-length codes(IEEE, 2020) Nooraiepour, A.; Aghdam, S. R.; Duman, Tolga M.Practical codes for the Gaussian wiretap channel are designed aiming at satisfying information-theoretic metrics to ensure security against a passive eavesdropper (Eve). Specifically, a design criterion is introduced for the coset coding scheme in order to satisfy a strong secrecy condition described with the mutual information between the secret message and Eve's observation. In addition, mutual information neural estimation (MINE) powered from deep learning tools is applied in order to directly compute the information-theoretic security constraint, and verify the proposed solutions. It is shown that finite-length coset codes can indeed ensure secure transmission from an information-theoretic perspective.Item Open Access An overview of physical layer security with finite-alphabet signaling(Institute of Electrical and Electronics Engineers Inc., 2019) Aghdam, Sina Rezaei; Nooraiepour, A.; Duman, Tolga M.Providing secure communications over the physical layer with the objective of achieving secrecy without requiring a secret key has been receiving growing attention within the past decade. The vast majority of the existing studies in the area of physical layer security focus exclusively on the scenarios where the channel inputs are Gaussian distributed. However, in practice, the signals employed for transmission are drawn from discrete signal constellations such as phase shift keying and quadrature amplitude modulation. Hence, understanding the impact of the finite-alphabet input constraints and designing secure transmission schemes under this assumption is a mandatory step toward a practical implementation of physical layer security. With this motivation, this paper reviews recent developments on physical layer security with finite-alphabet inputs. We explore transmit signal design algorithms for single-antenna as well as multi-antenna wiretap channels under different assumptions on the channel state information at the transmitter. Moreover, we present a review of the recent results on secure transmission with discrete signaling for various scenarios including multi-carrier transmission systems, broadcast channels with confidential messages, cognitive multiple access and relay networks. Throughout the article, we stress the important behavioral differences of discrete versus Gaussian inputs in the context of the physical layer security. We also present an overview of practical code construction over Gaussian and fading wiretap channels, and discuss some open problems and directions for future research.