BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Correlation features"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Detection of fungal damaged popcorn using image property covariance features
    (Elsevier, 2012) Yorulmaz, O.; Pearson, T. C.; Çetin, A.
    Covariance-matrix-based features were applied to the detection of popcorn infected by a fungus that causes a symptom called " blue-eye" . This infection of popcorn kernels causes economic losses due to the kernels' poor appearance and the frequently disagreeable flavor of the popped kernels. Images of kernels were obtained to distinguish damaged from undamaged kernels using image-processing techniques. Features for distinguishing blue-eye-damaged from undamaged popcorn kernel images were extracted from covariance matrices computed using various image pixel properties. The covariance matrices were formed using different property vectors that consisted of the image coordinate values, their intensity values and the first and second derivatives of the vertical and horizontal directions of different color channels. Support Vector Machines (SVM) were used for classification purposes. An overall recognition rate of 96.5% was achieved using these covariance based features. Relatively low false positive values of 2.4% were obtained which is important to reduce economic loss due to healthy kernels being discarded as fungal damaged. The image processing method is not computationally expensive so that it could be implemented in real-time sorting systems to separate damaged popcorn or other grains that have textural differences.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Real-time wildfire detection using correlation descriptors
    (IEEE, 2011) Habiboğlu, Y. Hakan; Günay, Osman; Çetin, A. Enis
    A video based wildfire detection system that based on spatio-temporal correlation descriptors is developed. During the initial stages of wildfires smoke plume becomes visible before the flames. The proposed method uses background subtraction and color thresholds to find the smoke colored slow moving regions in video. These regions are divided into spatio-temporal blocks and correlation features are extracted from the blocks. Property sets that represent both the spatial and the temporal characteristics of smoke regions are used to form correlation descriptors. An SVM classifier is trained and tested with descriptors obtained from video data containing smoke and smoke colored objects. Experimental results are presented. © 2011 EURASIP.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback