BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Core-shell quantum dots"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Broadband optical transparency in plasmonic nanocomposite polymer films via exciton-plasmon energy transfer
    (OSA - The Optical Society, 2016) Dhama R.; Rashed, A. R.; Caligiuri V.; El Kabbash M.; Strangi, G.; De Luca A.
    Inherent absorptive losses affect the performance of all plasmonic devices, limiting their fascinating applications in the visible range. Here, we report on the enhanced optical transparency obtained as a result of the broadband mitigation of optical losses in nanocomposite polymeric films, embedding core-shell quantum dots (CdSe@ZnS QDs) and gold nanoparticles (Au-NPs). Exciton-plasmon coupling enables non-radiative energy transfer processes from QDs to metal NPs, resulting in gain induced transparency of the hybrid flexible systems. Experimental evidences, such as fluorescence quenching and modifications of fluorescence lifetimes confirm the presence of this strong coupling between plexcitonic elements. Measures performed by means of an ultra-fast broadband pump-probe setup demonstrate loss compensation of gold NPs dispersed in plastic network in presence of gain. Furthermore, we compare two films containing different concentrations of gold NPs and same amount of QDs, to investigate the role of acceptor concentration (Au-NPs) in order to promote an effective and efficient energy transfer mechanism. Gain induced transparency in bulk systems represents a promising path towards the realization of loss compensated plasmonic devices. © 2016 Optical Society of America.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Ultrafast transient optical loss dynamics in exciton-plasmon nano-assemblies
    (Royal Society of Chemistry, 2017) Elkabbash, M.; Rashed, A.R.; Kucukoz, B.; Nguyen, Q.; Karatay, A.; Yaglioglu, G.; Özbay, Ekmel; Caglayan, H.; Strangi, G.
    We study the exciton-plasmon dynamics that lead to optical loss mitigation via ultrafast transient absorption spectroscopy (UTAS) on hybrid aggregates of core-shell quantum dots (QDs) and Au nanoparticles (NPs). We highlight that generating hot electrons in plasmonic NPs contributes to the transient differential absorption spectrum under optical excitation. The results suggest modifying the method of analyzing the transient absorption spectra of loss mitigated systems. Additionally, we investigate the effect of Electron Oscillation frequency-Phonon Resonance Detuning (EOPRD) on loss mitigation efficiency. Moreover, power dependent UTAS reveal a frequency pulling like effect in the transient bleach maximum towards the gain emission. We show that the appropriate choice of the pump wavelength and by changing the pump power we can conclusively prove the existence of loss mitigation using UTAS. Finally, we study the transient kinetics of hybrid gain-plasmon systems and report interesting hybrid transient kinetics.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback