Browsing by Subject "Copper doping"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Efficient generation of emissive many-body correlations in copper-doped colloidal quantum wells(Cell Press, 2022-09-21) Yu, Junhong; Sharma, Manoj; Li, Mingjie; Liu, Baiquan; Hernández-Martínez, Pedro Ludwig; Delikanli, Savaş; Sharma, Ashma; Altintas, Yemliha; Hettiarachchi, Chathuranga; Sum, Tze Chien; Demir, Hilmi Volkan; Dang, CuongColloidal quantum wells (CQWs) provide an appealing platform to achieve emissive many-body correlations for novel optoelectronic devices, given that they act as hosts for strong carrier Coulomb interactions and present suppressed Auger recombination. However, the demonstrated high-order excitonic emission in CQWs requires ultrafast pumping with high excitation levels and can only be spectrally resolved at the single-particle level under cryogenic conditions. Here, through systematic investigation using static power-dependent emission spectroscopy and transient carrier dynamics, we show that Cu-doped CdSe CQWs exhibit continuous-wave-pumped high-order excitonic emission at room temperature with a large binding energy of ∼64 meV. We attribute this unique behavior to dopant excitons in which the ultralong lifetime and the highly localized wavefunction facilitate the formation of many-body correlations. The spectrally resolved high-order excitonic emission generated at power levels compatible with solar irradiation and electrical injection might pave the way for novel solution-processed solid-state devices. © 2022 The AuthorsItem Open Access Low-threshold lasing from copper-doped CdSe colloidal quantum wells(Wiley, 2021-05-04) Yu, J.; Sharma, M.; Li, M.; Delikanlı, Savaş; Sharma, A.; Taimoor, M.; Altintas, Y.; McBride, J. R.; Kusserow, T.; Sum, T.; Demir, Hilmi VolkanTransition metal doped colloidal nanomaterials (TMDCNMs) have recently attracted attention as promising nano-emitters due to dopant-induced properties. However, despite ample investigations on the steady-state and dynamic spectroscopy of TMDCNMs, experimental understandings of their performance in stimulated emission regimes are still elusive. Here, the optical gain properties of copper-doped CdSe colloidal quantum wells (CQWs) are systemically studied with a wide range of dopant concentration for the first time. This work demonstrates that the amplified spontaneous emission (ASE) threshold in copper-doped CQWs is a competing result between the biexciton formation, which is preferred to achieve population inversion, and the hole trapping which stymies the population inversion. An optimum amount of copper dopants enables the lowest ASE threshold of ≈7 µJ cm−2, about 8-fold reduction from that in undoped CQWs (≈58 µJ cm−2) under sub-nanosecond pulse excitation. Finally, a copper-doped CQW film embedded in a vertical cavity surface-emitting laser (VCSEL) structure yields an ultralow lasing threshold of 4.1 µJ cm−2. Exploiting optical gain from TMDCNMs may help to further boost the performance of colloidal-based lasers.Item Open Access Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators(Wiley-VCH Verlag, 2017) Sharma, M.; Gungor K.; Yeltik A.; Olutas M.; Guzelturk, B.; Kelestemur Y.; Erdem, T.; Delikanli S.; McBride, J. R.; Demir, Hilmi VolkanDoping of bulk semiconductors has revealed widespread success in optoelectronic applications. In the past few decades, substantial effort has been engaged for doping at the nanoscale. Recently, doped colloidal quantum dots (CQDs) have been demonstrated to be promising materials for luminescent solar concentrators (LSCs) as they can be engineered for providing highly tunable and Stokes-shifted emission in the solar spectrum. However, existing doped CQDs that are aimed for full solar spectrum LSCs suffer from moderately low quantum efficiency, intrinsically small absorption cross-section, and gradually increasing absorption profiles coinciding with the emission spectrum, which together fundamentally limit their effective usage. Here, the authors show the first account of copper doping into atomically flat colloidal quantum wells (CQWs). In addition to Stokes-shifted and tunable dopant-induced photoluminescence emission, the copper doping into CQWs enables near-unity quantum efficiencies (up to ≈97%), accompanied by substantially high absorption cross-section and inherently step-like absorption profile, compared to those of the doped CQDs. Based on these exceptional properties, the authors have demonstrated by both experimental analysis and numerical modeling that these newly synthesized doped CQWs are excellent candidates for LSCs. These findings may open new directions for deployment of doped CQWs in LSCs for advanced solar light harvesting technologies.