Browsing by Subject "Cooperative wireless networks"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Distributed bounding of feasible sets in cooperative wireless network positioning(IEEE, 2013) Gholami, M. R.; Wymeersch, H.; Gezici, Sinan; Ström, E. G.Locations of target nodes in cooperative wireless sensor networks can be confined to a number of feasible sets in certain situations, e.g., when the estimated distances between sensors are larger than the actual distances. Quantifying feasible sets is often challenging in cooperative positioning. In this letter, we propose an iterative technique to cooperatively outer approximate the feasible sets containing the locations of the target nodes. We first outer approximate a feasible set including a target node location by an ellipsoid. Then, we extend the ellipsoid with the measured distances between sensor nodes and obtain larger ellipsoids. The larger ellipsoids are used to determine the intersections containing other targets. Simulation results show that the proposed technique converges after a small number of iterations.Item Open Access Hybrid TW-TOA/TDOA positioning algorithms for cooperative wireless networks(IEEE, 2011) Gholami, M.R.; Gezici, Sinan; Ström, E.G.; Rydström, M.The problem of positioning an unknown target is studied for a cooperative wireless sensor network using hybrid two-way time-of-arrival and time-difference-of-arrival measurements. A maximum likelihood estimator (MLE) can be employed to solve the problem. Due to the non-linear nature of the cost function in the MLE, a numerical method, e.g., an iterative search algorithm with a good initial point, should be taken to accurately estimate the target. To avoid drawbacks in a numerical method, we instead linearize the measurements and obtain a new two-step estimator that has a closed-form solution in each step. Simulation results confirm that the proposed linear estimator can attain Cramer-Rao lower bound for sufficiently high SNR. © 2011 IEEE.