Browsing by Subject "Convolutional neural network"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Applying deep learning in augmented reality tracking(IEEE, 2016-11-12) Akgül, Ömer; Penekli, H. I.; Genç, Y.An existing deep learning architecture has been adapted to solve the detection problem in camera-based tracking for augmented reality (AR). A known target, in this case a planar object, is rendered under various viewing conditions including varying orientation, scale, illumination and sensor noise. The resulting corpus is used to train a convolutional neural network to match given patches in an incoming image. The results show comparable or better performance compared to state of art methods. Timing performance of the detector needs improvement but when considered in conjunction with the robust pose estimation process promising results are shown. © 2016 IEEE.Item Open Access Artificial intelligence-based hybrid anomaly detection and clinical decision support techniques for automated detection of cardiovascular diseases and Covid-19(2023-10) Terzi, Merve BegümCoronary artery diseases are the leading cause of death worldwide, and early diagnosis is crucial for timely treatment. To address this, we present a novel automated arti cial intelligence-based hybrid anomaly detection technique com posed of various signal processing, feature extraction, supervised, and unsuper vised machine learning methods. By jointly and simultaneously analyzing 12-lead electrocardiogram (ECG) and cardiac sympathetic nerve activity (CSNA) data, the automated arti cial intelligence-based hybrid anomaly detection technique performs fast, early, and accurate diagnosis of coronary artery diseases. To develop and evaluate the proposed automated arti cial intelligence-based hybrid anomaly detection technique, we utilized the fully labeled STAFF III and PTBD databases, which contain 12-lead wideband raw recordings non invasively acquired from 260 subjects. Using the wideband raw recordings in these databases, we developed a signal processing technique that simultaneously detects the 12-lead ECG and CSNA signals of all subjects. Subsequently, using the pre-processed 12-lead ECG and CSNA signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of coronary artery diseases. Using the extracted discriminative features, we developed a supervised classi cation technique based on arti cial neural networks that simultaneously detects anomalies in the 12-lead ECG and CSNA data. Furthermore, we developed an unsupervised clustering technique based on the Gaussian mixture model and Neyman-Pearson criterion that performs robust detection of the outliers corresponding to coronary artery diseases. By using the automated arti cial intelligence-based hybrid anomaly detection technique, we have demonstrated a signi cant association between the increase in the amplitude of CSNA signal and anomalies in ECG signal during coronary artery diseases. The automated arti cial intelligence-based hybrid anomaly de tection technique performed highly reliable detection of coronary artery diseases with a sensitivity of 98.48%, speci city of 97.73%, accuracy of 98.11%, positive predictive value (PPV) of 97.74%, negative predictive value (NPV) of 98.47%, and F1-score of 98.11%. Hence, the arti cial intelligence-based hybrid anomaly detection technique has superior performance compared to the gold standard diagnostic test ECG in diagnosing coronary artery diseases. Additionally, it out performed other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it signi cantly increases the detec tion performance of coronary artery diseases by taking advantage of the diversity in di erent data types and leveraging their strengths. Furthermore, its perfor mance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or clas sify coronary artery diseases. It also has a very short implementation time, which is highly desirable for real-time detection of coronary artery diseases in clinical practice. The proposed automated arti cial intelligence-based hybrid anomaly detection technique may serve as an e cient decision-support system to increase physicians' success in achieving fast, early, and accurate diagnosis of coronary artery diseases. It may be highly bene cial and valuable, particularly for asymptomatic coronary artery disease patients, for whom the diagnostic information provided by ECG alone is not su cient to reliably diagnose the disease. Hence, it may signi cantly improve patient outcomes, enable timely treatments, and reduce the mortality associated with cardiovascular diseases. Secondly, we propose a new automated arti cial intelligence-based hybrid clinical decision support technique that jointly analyzes reverse transcriptase polymerase chain reaction (RT-PCR) curves, thorax computed tomography im ages, and laboratory data to perform fast and accurate diagnosis of Coronavirus disease 2019 (COVID-19). For this purpose, we retrospectively created the fully labeled Ankara University Faculty of Medicine COVID-19 (AUFM-CoV) database, which contains a wide variety of medical data, including RT-PCR curves, thorax computed tomogra phy images, and laboratory data. The AUFM-CoV is the most comprehensive database that includes thorax computed tomography images of COVID-19 pneu monia (CVP), other viral and bacterial pneumonias (VBP), and parenchymal lung diseases (PLD), all of which present signi cant challenges for di erential diagnosis. We developed a new automated arti cial intelligence-based hybrid clinical de cision support technique, which is an ensemble learning technique consisting of two preprocessing methods, long short-term memory network-based deep learning method, convolutional neural network-based deep learning method, and arti cial neural network-based machine learning method. By jointly analyzing RT-PCR curves, thorax computed tomography images, and laboratory data, the proposed automated arti cial intelligence-based hybrid clinical decision support technique bene ts from the diversity in di erent data types that are critical for the reliable detection of COVID-19 and leverages their strengths. The multi-class classi cation performance results of the proposed convolu tional neural network-based deep learning method on the AUFM-CoV database showed that it achieved highly reliable detection of COVID-19 with a sensitivity of 91.9%, speci city of 92.5%, precision of 80.4%, and F1-score of 86%. There fore, it outperformed thorax computed tomography in terms of the speci city of COVID-19 diagnosis. Moreover, the convolutional neural network-based deep learning method has been shown to very successfully distinguish COVID-19 pneumonia (CVP) from other viral and bacterial pneumonias (VBP) and parenchymal lung diseases (PLD), which exhibit very similar radiological ndings. Therefore, it has great potential to be successfully used in the di erential diagnosis of pulmonary dis eases containing ground-glass opacities. The binary classi cation performance results of the proposed convolutional neural network-based deep learning method showed that it achieved a sensitivity of 91.5%, speci city of 94.8%, precision of 85.6%, and F1-score of 88.4% in diagnosing COVID-19. Hence, it has compara ble sensitivity to thorax computed tomography in diagnosing COVID-19. Additionally, the binary classi cation performance results of the proposed long short-term memory network-based deep learning method on the AUFM-CoV database showed that it performed highly reliable detection of COVID-19 with a sensitivity of 96.6%, speci city of 99.2%, precision of 98.1%, and F1-score of 97.3%. Thus, it outperformed the gold standard RT-PCR test in terms of the sensitivity of COVID-19 diagnosis Furthermore, the multi-class classi cation performance results of the proposed automated arti cial intelligence-based hybrid clinical decision support technique on the AUFM-CoV database showed that it diagnosed COVID-19 with a sen sitivity of 66.3%, speci city of 94.9%, precision of 80%, and F1-score of 73%. Hence, it has been shown to very successfully perform the di erential diagnosis of COVID-19 pneumonia (CVP) and other pneumonias. The binary classi cation performance results of the automated arti cial intelligence-based hybrid clinical decision support technique revealed that it diagnosed COVID-19 with a sensi tivity of 90%, speci city of 92.8%, precision of 91.8%, and F1-score of 90.9%. Therefore, it exhibits superior sensitivity and speci city compared to laboratory data in COVID-19 diagnosis. The performance results of the proposed automated arti cial intelligence-based hybrid clinical decision support technique on the AUFM-CoV database demon strate its ability to provide highly reliable diagnosis of COVID-19 by jointly ana lyzing RT-PCR data, thorax computed tomography images, and laboratory data. Consequently, it may signi cantly increase the success of physicians in diagnosing COVID-19, assist them in rapidly isolating and treating COVID-19 patients, and reduce their workload in daily clinical practice.Item Open Access Automated cancer stem cell recognition in H and E stained tissue using convolutional neural networks and color deconvolution(SPIE, 2017) Aichinger, W.; Krappe, S.; Çetin, A. Enis; Çetin-Atalay, R.; Üner, A.; Benz, M.; Wittenberg, T.; Stamminger, M.; Münzenmayer, C.The analysis and interpretation of histopathological samples and images is an important discipline in the diagnosis of various diseases, especially cancer. An important factor in prognosis and treatment with the aim of a precision medicine is the determination of so-called cancer stem cells (CSC) which are known for their resistance to chemotherapeutic treatment and involvement in tumor recurrence. Using immunohistochemistry with CSC markers like CD13, CD133 and others is one way to identify CSC. In our work we aim at identifying CSC presence on ubiquitous Hematoxilyn and Eosin (HE) staining as an inexpensive tool for routine histopathology based on their distinct morphological features. We present initial results of a new method based on color deconvolution (CD) and convolutional neural networks (CNN). This method performs favorably (accuracy 0.936) in comparison with a state-of-the-art method based on 1DSIFT and eigen-analysis feature sets evaluated on the same image database. We also show that accuracy of the CNN is improved by the CD pre-processing.Item Open Access Enforcing multilabel consistency for automatic spatio-temporal assessment of shoulder pain intensity(Association for Computing Machinery, 2020) Erekat, Diyala; Hammal, Z.; Siddiqui, M.; Dibeklioğlu, HamdiThe standard clinical assessment of pain is limited primarily to self-reported pain or clinician impression. While the self-reported measurement of pain is useful, in some circumstances it cannot be obtained. Automatic facial expression analysis has emerged as a potential solution for an objective, reliable, and valid measurement of pain. In this study, we propose a video based approach for the automatic measurement of self-reported pain and the observer pain intensity, respectively. To this end, we explore the added value of three self-reported pain scales, i.e., the Visual Analog Scale (VAS), the Sensory Scale (SEN), and the Affective Motivational Scale (AFF), as well as the Observer Pain Intensity (OPI) rating for a reliable assessment of pain intensity from facial expression. Using a spatio-temporal Convolutional Neural Network - Recurrent Neural Network (CNN-RNN) architecture, we propose to jointly minimize the mean absolute error of pain scores estimation for each of these scales while maximizing the consistency between them. The reliability of the proposed method is evaluated on the benchmark database for pain measurement from videos, namely, the UNBC-McMaster Pain Archive. Our results show that enforcing the consistency between different self-reported pain intensity scores collected using different pain scales enhances the quality of predictions and improve the state of the art in automatic self-reported pain estimation. The obtained results suggest that automatic assessment of selfreported pain intensity from videos is feasible, and could be used as a complementary instrument to unburden caregivers, specially for vulnerable populations that need constant monitoring.Item Open Access Spatio-temporal assessment of pain intensity through facial transformation-based representation learning(2021-09) Erekat, Diyala Nabeel AtaThe nature of pain makes it di cult to assess due to its subjectivity and multidimensional characteristics that include intensity, duration, and location. However, the ability to assess pain in an objective and reliable manner is crucial for adequate pain management intervention as well as the diagnosis of the underlying medical cause. To this end, in this thesis, we propose a video-based approach for the automatic measurement of self-reported pain. The proposed method aims to learn an e cient facial representation by exploiting the transformation of one subject's facial expression to that of another subject's within a similar pain group. We also explore the e ect of leveraging self-reported pain scales i.e., the Visual Analog Scale (VAS), the Sensory Scale (SEN), and the A ective Motivational Scale (AFF), as well as the Observer Pain Intensity (OPI) on the reliable assessment of pain intensity. To this end, a convolutional autoencoder network is proposed to learn the facial transformation between subjects. The autoencoder's optimized weights are then used to initialize the spatio-temporal network architecture, which is further optimized by minimizing the mean absolute error of estimations in terms of each of these scales while maximizing the consistency between them. The reliability of the proposed method is evaluated on the benchmark database for pain measurement from videos, namely, the UNBC-McMaster Pain Archive. Despite the challenging nature of this problem, the obtained results show that the proposed method improves the state of the art, and the automated assessment of pain severity is feasible and applicable to be used as a supportive tool to provide a quantitative assessment of pain in clinical settings.Item Open Access Toward an estimation of user tagging credibility for social image retrieval(ACM, 2014-11) Ginsca, A. L.; Popescu, A.; Ionescu, B.; Armağan, Anıl; Kanellos, I.Existing image retrieval systems exploit textual or/and visual information to return results. Retrieval is mostly focused on data themselves and disregards the data sources. In Web 2.0 platforms, the quality of annotations provided by different users can vary strongly. To account for this variability, we complement existing methods by introducing user tagging credibility in the retrieval process. Tagging credibility is automatically estimated by leveraging a large set of visual concept classifiers learned with Overfeat, a convolutional neural network (CNN) feature. A good image retrieval system should return results that are both relevant and diversified and here we tackle both challenges. Classically, we diversify results by using a k-Means algorithm and increase relevance by favoring images uploaded by users with good credibility estimates. Evaluation is performed on DIV400, a publicly available social image retrieval dataset and shows that our method is competitive with existing approaches.Item Open Access Weakly supervised object localization with multi-fold multiple instance learning(IEEE Computer Society, 2017) Cinbis, R. G.; Verbeek, J.; Schmid, C.Object category localization is a challenging problem in computer vision. Standard supervised training requires bounding box annotations of object instances. This time-consuming annotation process is sidestepped in weakly supervised learning. In this case, the supervised information is restricted to binary labels that indicate the absence/presence of object instances in the image, without their locations. We follow a multiple-instance learning approach that iteratively trains the detector and infers the object locations in the positive training images. Our main contribution is a multi-fold multiple instance learning procedure, which prevents training from prematurely locking onto erroneous object locations. This procedure is particularly important when using high-dimensional representations, such as Fisher vectors and convolutional neural network features. We also propose a window refinement method, which improves the localization accuracy by incorporating an objectness prior. We present a detailed experimental evaluation using the PASCAL VOC 2007 dataset, which verifies the effectiveness of our approach. © 2016 IEEE.