Browsing by Subject "Contrast agents"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Fluorescent heterodoped nanotetrapods as synergistically enhancing positive and negative magnetic resonance imaging contrast agents(American Chemical Society, 2016) Sharma, V. K.; Alipour, A.; Soran-Erdem Z.; Kelestemur Y.; Aykut, Z. G.; Demir, Hilmi VolkanIn this work, we report Mn-Fe heterodoped ZnSe tetrapod nanocrystals (NCs) synthesized to synergistically enhance contrast in both T1- and T2-weighted magnetic resonance imaging (MRI). The proposed NCs were prepared using a customized heteroarchitecture such that the manganese (Mn) is confined in the core and iron (Fe) in the branches of the tetrapods. The elemental composition and profile of these NCs were studied using X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, and inductively coupled plasma mass spectroscopy. Photoluminescence quantum yield of these heterodoped NCs in water is ∼30%. Magnetic measurements reveal the simultaneous presence of superparamagnetic and paramagnetic behavior in these NCs because of the coexistence of Mn2+ and Fe2+ dopants. Their potential as simultaneous positive and negative MRI contrast agents was demonstrated by relaxivity measurements and in vivo MRI. From the in vivo studies, we also found that these NCs (with a hydrodynamic diameter of 20 nm) are excreted from the body within 24 h after the injection. Therefore, these heterodoped tetrapods NCs, while being fluorescent and safe, hold great future as a synergistically enhancing dual-modal MRI contrast agent.Item Open Access Genetically designed microbes for bioimaging and biosensing(2024-09) Yavuz, MerveThe advantageous approach to the utilization of the microbes for bioimaging and biosensing underlies under their active motility and self-propulsion characteristics besides their easy bioengineering feature to gain multi-functional activities. The emerging developments make use of microorganisms as therapeutic agents in disease diagnosis and treatment. The dynamic nature of the habitat forces the microorganisms to acclimate themselves to changing living conditions via evolving exclusive bio-functionalities for their survival. Therefore, the living microorganisms producing functional materials serve as a biohybrid system with unprecedented potential for enhancing the detection of a disease biomarker molecule or meeting the great need in cancer diagnosis. The synthetic biology approach, a multidisciplinary field of science, gives the ability to engineer and modulate the microorganisms to redesign existing natural pathways, resulting in the gain of the desired function. Inspiring form nature, the biomineralization of iron-oxide materials is demanding for their potential usage in antitumor effect due to their easy modulation, stability, and magnetic properties. Furthermore, the certain respiratory capacities of electrochemically active microbes enable the respiration of diverse inorganic and organic molecules for their survival in redox-stratified environments. The ability of exchanging electrons with electrodes possesses several diverse biotechnological applications like the construction of microbial fuel cells, electro-fermentation, and electro-genetics. In this thesis, the microbes were engineered for their utilization in bioimaging and biosensing applications. Firstly, intracellular and extracellular magnetite accumulating Escherichia coli bacterial cell machineries were constructed as contrast agents for the MRI scanning, promising for a cancer diagnostic. Secondly, the intracellular magnetite accumulating bacterial cells, possessing all the redox reactions that readily take place in their cytoplasm via synthetically produced proteins, were further engineered to improve their targeting capability for breast cancer tumor cells by displaying a certain nanobody on the cell surface. Thirdly, electronic sentinel bacterial cells were designed utilizing the electron transfer modules for extracellular electron consumption by targeted acceptors for their wireless biomonitoring applications upon detecting a disease molecule. The methodologies described in this thesis are envisioned as promising tools for diagnostic applications.Item Open Access Heterodoped manoparticles as dual-mode contrast agent for MRI(IEEE, 2018) Alipour, Akbar; Sharma, Vijay Kumar; Soran-Erdem, Zeliha; Kelestemur, Yusuf; Aykut, Zaliha Gamze; Demir, Hilmi VolkanThe purpose of this work is to synthesize Mn-Fe heterodoped ZnSe tetrapod nanocrystals (NCs) as dualmode MRI contrast agent to offer synergetic beneficial over the single contrast tracer. Also, in vivo feasibility of the Mn-Fe heterodoped ZnSe tetrapod NCs as a dualmode contrast agent has been studied.