Browsing by Subject "Continuum mechanics"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Electrostatic interactions in charged nanoslits within an explicit solvent theory(Institute of Physics Publishing, 2015) Buyukdagli, S.Within a dipolar Poisson-Boltzmann theory including electrostatic correlations, we consider the effect of explicit solvent structure on solvent and ion partition confined to charged nanopores. We develop a relaxation scheme for the solution of this highly non-linear integro-differential equation for the electrostatic potential. The scheme is an extension of the approach previously introduced for simple planes (Buyukdagli and Blossey 2014 J. Chem. Phys. 140 234903) to nanoslit geometry. We show that the reduced dielectric response of solvent molecules at the membrane walls gives rise to an electric field significantly stronger than the field of the classical Poisson-Boltzmann equation. This peculiarity associated with non-local electrostatic interactions results in turn in an interfacial counterion adsorption layer absent in continuum theories. The observation of this enhanced counterion affinity in the very close vicinity of the interface may have important impacts on nanofluidic transport through charged nanopores. Our results indicate the quantitative inaccuracy of solvent implicit nanofiltration theories in predicting the ionic selectivity of membrane nanopores.Item Open Access A model-based scheme for anticontrol of some chaotic systems(World Scientific Publishing, 2003) Morgül, Ö.We consider a model-based approach for the anticontrol of some continuous time systems. We assume the existence of a chaotic model in an appropriate form. By using a suitable input, we match the dynamics of the controlled system and the chaotic model. We show that controllable systems can be chaotifled with the proposed method. We give a procedure to generate such chaotic models. We also apply an observer-based synchronization scheme to compute the required input.Item Open Access Parity effect in mesoscopic and nanoscopic superconducting particles(Elsevier B.V., 2001) Kulik, I. O.; Boyaci, H.; Gedik, Z.Superconductivity in small metallic specimens is studied with regard to the size dependence of the parity gap (ΔP), a parameter distinguishing between the energy of even and odd number of electrons in the granule. ΔP is shown to be an increasing function of level spacing δ. The energy gap of superconductor Δ, on the other hand, decreases with increasing δ and vanishes at δ = δc which is of the order of Δ. However, non-zero value of ΔP persists above δc in a gapless superconducting-insulating state. Level degeneracy in small specimens having perfect geometry changes the size dependence of the parity gap, the Josephson effect, and flux quantization. Parity gap is evaluated using an interpolation procedure between the continuum limit (δ ≪ Δ), the moderate mesoscopic regime (δ ∼ Δ), and the nanoscopic scale (δ ≫ Δ), for which an exact solution to the pairing problem is provided with the numeric diagonalization of system Hamiltonian in a small metallic clusterItem Open Access Peridynamics review(SAGE Publications Inc., 2019) Javili, Ali; Morasata, Rico; Öterkuş, E.; Öterkuş, S.Peridynamics (PD) is a novel continuum mechanics theory established by Stewart Silling in 2000. The roots of PD can be traced back to the early works of Gabrio Piola according to dell’Isola et al. PD has been attractive to researchers as it is a non-local formulation in an integral form, unlike the local differential form of classical continuum mechanics. Although the method is still in its infancy, the literature on PD is fairly rich and extensive. The prolific growth in PD applications has led to a tremendous number of contributions in various disciplines. This manuscript aims to provide a concise description of the PD theory together with a review of its major applications and related studies in different fields to date. Moreover, we succinctly highlight some lines of research that are yet to be investigated.Item Open Access Simulation-based engineering(Springer, 2017) Çakmakcı, Melih; Sendur, G. K.; Durak, U.; Mittal, S.; Durak, U.; Ören, T.Engineers, mathematicians, and scientists were always interested in numerical solutions of real-world problems. The ultimate objective within nearly all engineering projects is to reach a functional design without violating any of the performance, cost, time, and safety constraints while optimizing the design with respect to one of these metrics. A good mathematical model is at the heart of each powerful engineering simulation being a key component in the design process. In this chapter, we review role of simulation in the engineering process, the historical developments of different approaches, in particular simulation of machinery and continuum problems which refers basically to the numerical solution of a set of differential equations with different initial/boundary conditions. Then, an overview of well-known methods to conduct continuum based simulations within solid mechanics, fluid mechanics and electromagnetic is given. These methods include FEM, FDM, FVM, BEM, and meshless methods. Also, a summary of multi-scale and multi-physics-based approaches are given with various examples. With constantly increasing demands of the modern age challenging the engineering development process, the future of simulations in the field hold great promise possibly with the inclusion of topics from other emerging fields. As technology matures and the quest for multi-functional systems with much higher performance increases, the complexity of problems that demand numerical methods also increases. As a result, large-scale effective computing continues to evolve allowing for efficient and practical performance evaluation and novel designs, hence the enhancement of our thorough understanding of the physics within highly complex systems.