Browsing by Subject "Constant envelope precoding"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Discrete-phase constant envelope precoding for massive MIMO systems(Institute of Electrical and Electronics Engineers Inc., 2017) Kazemi, M.; Aghaeinia, H.; Duman, T. M.We consider downlink of a multiuser massive multiple-input multiple-output (MIMO) system and focus on reducing the hardware costs by using a single common power amplifier and separate phase shifters (PSs) for antenna front-ends. In the previous literature, the use of analog PSs in this setup has been considered. Here, we study the use of practical digital PSs, which only support a limited set of discrete phases. Considering the sum of interference powers as a metric, we formulate the corresponding nonlinear discrete optimization problem and solve for the phases to be used during transmission. We devise a low-complexity algorithm, which employs a trellis structure providing suboptimal, but efficient and effective solutions. We demonstrate via examples that the proposed solutions have comparable performance to conventional analog PS-based algorithms. Furthermore, we prove that by utilizing discrete-phase constant envelope precoding, the interference can be made arbitrarily small by increasing the number of antennas. Therefore, the asymptotic gains promised by massive MIMO systems are preserved. We also obtain closed-form expressions for the rate loss due to errors in the phase and amplitude of the PSs, for both low and high SNR regimes.Item Open Access Multi-envelope precoding for massive mimo systems(2017-05) Gümüş, MücahitWireless communications is an important part of information and communication technologies. Particularly, with the introduction of 5G wireless systems, higher data rates, ultra-low latencies and improved power efficiencies are demanded. It is understood that multiple-input multiple-output (MIMO) systems constitute some of the promising technologies to meet these demands, however, currently used number of antennas at the base stations (BS) is not sufficient to reveal the full potential. As a result, massive MIMO systems which use a very large number of antennas at the BSs have recently been proposed as enabling solutions. While massive MIMO promises much for 5G and beyond wireless technologies, there are many problems to be solved including lowering of high built-in and operating costs of BSs to make this technology practical. Constant envelope (CE) precoding has recently been proposed as a way to reduce the hardware complexity of massive MIMO systems. CE precoding technique for downlink enables a BS structure with one (nonlinear) power amplifier (PA) coupled with continuous or discrete phase shifters in front of each antenna instead of separate highly linear PAs driving each. While CE precoding offers significant reductions in hardware costs, it results in some performance loss in terms of achievable data rates and power efficiencies compared to conventional zero forcing precoding based approaches.In this thesis, we build on the CE precoding idea and propose the use of a multienvelope precoding technique for massive MIMO systems which utilizes more than one (but only a few, e.g., 2 or 3) PAs with the objective of recovering some of the performance loss due to the use of CE precoding. The proposed multi-envelope precoding method relies on the standard zero forcing algorithm to group the antennas, and then it utilizes an envelope with a higher level on the antenna group(s) requiring higher power. In other words, the number of power levels used equals to the number of antenna groups. We explore the use of both continuous and discrete phase shifters, and via extensive simulations, we demonstrate that the newly proposed approaches provide significant performance improvements over the CE solutions closing some of the performance gap with average power constraint precoding.