Browsing by Subject "Connected component"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Detection of compound structures using multiple hierarchical segmentations(IEEE, 2012) Akçay, H. Gökhan; Aksoy, SelimIn this paper, our aim is to discover compound structures comprised of regions obtained from hierarchical segmentations of multiple spectral bands. A region adjacency graph is constructed by representing regions as vertices and connecting these vertices that are spatially close by edges. Then, dissimilarities between neighboring vertices are computed using statistical and structural features, and are assigned as edge weights. Finally, the compound structures are detected by extracting the connected components of the graph whose edges with relatively large weights are removed. Experiments using WorldView-2 images show that grouping of these vertices according to different criteria can extract high-level compound structures that cannot be obtained using traditional techniques. © 2012 IEEE.Item Open Access A hybrid approach for line segmentation in handwritten documents(2012) Adıgüzel, Hande; Şahin, Emre; Duygulu, PınarThis paper presents an approach for text line segmentation which combines connected component based and projection based information to take advantage of aspects of both methods. The proposed system finds baselines of each connected component. Lines are detected by grouping baselines of connected components belonging to each line by projection information. Components are assigned to lines according to different distance metrics with respect to their size. This study is one of the rare studies that apply line segmentation to Ottoman documents. Further, it proposes a new method, Fourier curve fitting, to detect the peaks in a projection profile. The algorithm is demonstrated on different printed and handwritten Ottoman datasets. Results show that the method manages to segment lines both from printed and handwritten documents under different writing conditions at least with 92% accuracy.