Browsing by Subject "Concretes"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Computational thermal homogenization of concrete(2013) Wu, T.; Temizer, I.; Wriggers, P.Computational thermal homogenization is applied to the microscale and mesoscale of concrete sequentially. Microscale homogenization is based on a 3D micro-CT scan of hardened cement paste (HCP). Mesoscale homogenization is carried out through the analysis of aggregates which are randomly distributed in a homogenized matrix. The thermal conductivity of this matrix is delivered by the homogenization of HCP, thereby establishing the link between micro-mesoscale of concrete. This link is critical to capture the dependence of the overall conductivity of concrete on the internal relative humidity. Therefore, special emphasis is given to the effect of relative humidity changes in micropores on the thermal conductivity of HCP and concrete. Each step of homogenization is compared with available experimental data. © 2012 Elsevier Ltd. All rights reserved.Item Open Access A method of two-scale chemo-thermal-mechanical coupling for concrete(CIMNE, 2011) Wu, T.; Temizer, İlker; Wriggers, P.The Alkali Silica Reaction(ASR) is one of the most important reasons to cause damage in cementitious constructions, which can be attributed to the expansion of hydrophilic gel produced in the reaction. In this contribution, the chemical extent is described depending on the temperature and it has influences on damage parameters. Expansions of the gel are assumed to only happen in the micropores of Hardened Cement Paste. Afterwards, the homogenization of damage in the microscale is initialized and the effective damage can be applied in the mesoscale directly. Moreover, parameter identification is implemented to extract the effective inelastic consititutive equation. In all, 3D multiscale chemo-thermo-mechanical coupled model is set up to describe the damage in the concrete due to ASR.Item Open Access A multiscale method to analyze the deterioration due to alkali silica reaction considering the effects of temperature and relative humidity(International Center for Numerical Methods in Engineering, 2013) Wu, T.; Temizer I.; Wriggers P.This work presents a three-dimensional multiscale framework to investigate the deterioration resulting from alkali silica reaction (ASR) in the concrete. In this contribution, 3D micro-CT scan of hardened cement paste (HCP) and aggregates with a random distribution embedded in a homogenized cement paste matrix represent the microscale and mesoscale of the concrete respectively. A 3D hydro-chemo-thermo-mechanical model based on staggered method is developed at the mesoscale of the concrete, yet taking into account the deterioration at the microscale due to ASR.Item Open Access A wireless passive sensing system for displacement/strain measurement in reinforced concrete members(MDPI AG, 2016) Ozbey B.; Erturk V.B.; Demir H.V.; Altintas, A.; Kurc O.In this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar) surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at µm/microstrains level. Experiments were performed in both the elastic and plastic deformation cases of steel rebars, and the sensing system was demonstrated to acquire telemetric data in both cases. The wireless measurement results from multiple probes are compared with the data obtained from the strain gages, and an excellent agreement is observed. A discrete time measurement where the system records data at different force levels is also shown. Practical issues regarding the placement of the sensors and accurate recording of data are discussed. The proposed sensing technology is demonstrated to be a good candidate for wireless structural health monitoring (SHM) of reinforced concrete members by its high sensitivity and wide dynamic range. © 2016 by the authors; licensee MDPI, Basel, Switzerland.Item Open Access Wireless sensing in complex electromagnetic media: construction materials and structural monitoring(Institute of Electrical and Electronics Engineers Inc., 2015) Özbey, B.; Demir, Hilmi Volkan; Kurc, O.; Ertürk, V. B.; Altıntaş, A.In this paper, wireless sensing in the presence of complex electromagnetic media created by combinations of reinforcing bars and concrete is investigated. The wireless displacement sensing system, primarily designed for use in structural health monitoring (SHM), is composed of a comb-like nested split-ring resonator (NSRR) probe and a transceiver antenna. Although each complex medium scenario is predicted to have a detrimental effect on sensing in principle, it is demonstrated that the proposed sensor geometry is able to operate fairly well in all scenarios except one. In these scenarios that mimic real-life SHM, it is shown that this sensor exhibits a high displacement resolution of 1 μm, a good sensitivity of 7 MHz/mm in average, and a high dynamic range extending over 20 mm. For the most disruptive scenario of placing concrete immediately behind NSRR, a solution based on employing a separator behind the probe is proposed to overcome the handicaps introduced by the medium. In order to obtain a one-to-one mapping from the measured frequency shift to the displacement, a numerical fit is proposed and used. The effects of several complex medium scenarios on this fit are discussed. These results indicate that the proposed sensing scheme works well in real-life SHM applications. © 2001-2012 IEEE.