Browsing by Subject "Concentration (composition)"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Bacteria immobilized electrospun polycaprolactone and polylactic acid fibrous webs for remediation of textile dyes in water(Elsevier, 2017-10) Sarioglu O.F.; S. Keskin, N. O.; Celebioglu A.; Tekinay, T.; Uyar, TamerIn this study, preparation and application of novel biocomposite materials for textile dye removal which are produced by immobilization of specific bacteria onto electrospun nanofibrous webs are presented. A textile dye remediating bacterial isolate, Clavibacter michiganensis, was selected for bacterial immobilization, a commercial reactive textile dye, Setazol Blue BRF-X, was selected as the target contaminant, and electrospun polycaprolactone (PCL) and polylactic acid (PLA) nanofibrous polymeric webs were selected for bacterial integration. Bacterial adhesion onto nanofibrous webs was monitored by scanning electron microscopy (SEM) imaging and optical density (OD) measurements were performed for the detached bacteria. After achieving sufficient amounts of immobilized bacteria on electrospun nanofibrous webs, equivalent web samples were utilized for testing the dye removal capabilities. Both bacteria/PCL and bacteria/PLA webs have shown efficient remediation of Setazol Blue BRF-X dye within 48 h at each tested concentration (50, 100 and 200 mg/L), and their removal performances were very similar to the free-bacteria cells. The bacteria immobilized webs were then tested for five times of reuse at an initial dye concentration of 100 mg/L, and found as potentially reusable with higher bacterial immobilization and faster dye removal capacities at the end of the test. Overall, these findings suggest that electrospun nanofibrous webs are available platforms for bacterial integration and the bacteria immobilized webs can be used as starting inocula for use in remediation of textile dyes in wastewater systems.Item Open Access Camera tamper detection using wavelet analysis for video surveillance(IEEE, 2007-09) Aksay, A.; Temizel, A.; Çetin, A. EnisIt is generally accepted that video surveillance system operators lose their concentration after a short period of time and may miss important events taking place. In addition, many surveillance systems are frequently left unattended. Because of these reasons, automated analysis of the live video feed and automatic detection of suspicious activity have recently gained importance. To prevent capture of their images, criminals resort to several techniques such as deliberately obscuring the camera view, covering the lens with a foreign object, spraying or defocusing the camera lens. In this paper, we propose some computationally efficient wavelet domain methods for rapid camera tamper detection and identify some real-life problems and propose solutions to these. © 2007 IEEE.Item Open Access Effects of laser ablated silver nanoparticles on Lemna minor(Elsevier, 2014) Üçüncü, E.; Özkan, A. D.; Kurşungöz, C.; Ülger, Z. E.; Ölmez, T. T.; Tekinay, T.; Ortaç, B.; Tunca E.Item Open Access Mesoporous metallic rhodium nanoparticles(Nature Publishing Group, 2017) Jiang B.; Li C.; Dag, Ö.; Abe, H.; Takei, T.; Imai, T.; Hossain, M. S. A.; Islam, M. T.; Wood, K.; Henzie, J.; Yamauchi, Y.Mesoporous noble metals are an emerging class of cutting-edge nanostructured catalysts due to their abundant exposed active sites and highly accessible surfaces. Although various noble metal (e.g. Pt, Pd and Au) structures have been synthesized by hard- and soft-templating methods, mesoporous rhodium (Rh) nanoparticles have never been generated via chemical reduction, in part due to the relatively high surface energy of rhodium (Rh) metal. Here we describe a simple, scalable route to generate mesoporous Rh by chemical reduction on polymeric micelle templates [poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA)]. The mesoporous Rh nanoparticles exhibited a ∼1/42.6 times enhancement for the electrocatalytic oxidation of methanol compared to commercially available Rh catalyst. Surprisingly, the high surface area mesoporous structure of the Rh catalyst was thermally stable up to 400 °C. The combination of high surface area and thermal stability also enables superior catalytic activity for the remediation of nitric oxide (NO) in lean-burn exhaust containing high concentrations of O 2.