Browsing by Subject "Computer vision applications"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Entropi fonsiyonuna dayalı uyarlanır karar tümleştirme yapısı(2012-04) Günay, Osman; Töreyin, B. U.; Köse, Kıvanç; Çetin, A. EnisBu bildiride, resim analizi ve bilgisayarla görü uygulamalarında kullanılmak üzere entropi fonksiyonuna dayanan uyarlanır karar tümleştirme yapısı geliştirilmiştir. Bu yapıda bileşik algoritma, herbiri güven derecesini temsil eden sıfır merkezli bir gerçek sayı olarak kendi kararını oluşturan birçok alt algoritmadan meydana gelir. Karar değerleri, çevrimiçi olarak alt algoritmaları tanımlayan dışbukey kümelerin üzerine entropik izdüşümler yapmaya dayalı bir aktif tümleştirme yöntemi ile güncellenen ağırlıklar kullanılarak doğrusal olarak birleştirilir. Bu yapıda genelde bir insan olan bir uzman da bulunur ve karar tümleştirme algoritmasına geribesleme sağlar. Önerilen karar tümleştirme algoritmasının performansı geliştirdigimiz video tabanlı bir orman yangını bulma sistemi kullanılarak test edilmiştir.Item Open Access Object rigidity and reflectivity identification based on motion analysis(IEEE, 2010) Zang, D.; Schrater P.R.; Doerschner, KatjaRigidity and reflectivity are important properties of objects, identifying these properties is a fundamental problem for many computer vision applications like motion and tracking. In this paper, we extend our previous work to propose a motion analysis based approach for detecting the object's rigidity and reflectivity. This approach consists of two steps. The first step aims to identify object rigidity based on motion estimation and optic flow matching. The second step is to classify specular rigid and diffuse rigid objects using structure from motion and Procrustes analysis. We show how rigid bodies can be detected without knowing any prior motion information by using a mutual information based matching method. In addition, we use a statistic way to set thresholds for rigidity classification. Presented results demonstrate that our approach can efficiently classify the rigidity and reflectivity of an object. © 2010 IEEE.