BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Computer hardware"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    ItemOpen Access
    Hardware accelerator design for data centers
    (IEEE, 2016-11) Yeşil, Şerif; Özdal, Muhammet Mustafa; Kim, T.; Ayupov, A.; Burns, S.; Öztürk, Özcan.
    As the size of available data is increasing, it is becoming inefficient to scale the computational power of traditional systems. To overcome this problem, customized application-specific accelerators are becoming integral parts of modern system on chip (SOC) architectures. In this paper, we summarize existing hardware accelerators for data centers and discuss the techniques to implement and embed them along with the existing SOCs. © 2015 IEEE.
  • No Thumbnail Available
    ItemOpen Access
    Log-periodic antenna design using electromagnetic simulations
    (IEEE, 2003-06) Ergül, Özgür; Gürel, Levent
    It is essential to complement theoretical antenna design recipes with the numerical results obtained from electromagnetic simulations. As such, the benefit of such a hybrid procedure is demonstrated by using the design of an LP antenna as a case study. It is shown that significant performance improvements can be obtained by applying corrections shown by the simulation results.
  • No Thumbnail Available
    ItemOpen Access
    Mesh topology design in overlay virtual private networks
    (IET, 2002) Karasan, E.; Ekin-Karasan, O.; Akar, N.; Pinar, M. C.
    The mesh topology design problem in overlay virtual private networks is studied. Given a set of customer nodes and an associated traffic matrix, tunnels that connect node pairs through a service provider network are determined such that the total multi-hopped traffic is minimised. A tabu search based heuristic is proposed.
  • No Thumbnail Available
    ItemOpen Access
    Simulations of ground-penetrating radars over lossy and heterogeneous grounds
    (IEEE, 2001) Gürel, Levent; Oğuz, U.
    The versatility of the three-dimensional (3-D) finite-difference time-domain (FDTD) method to model arbitrarily inhomogeneous geometries is exploited to simulate realistic groundpenetrating radar (GPR) scenarios for the purpose of assisting the subsequent designs of high-performance GPR hardware and software. The buried targets are modeled by conducting and dielectric prisms and disks. The ground model is implemented as lossy with surface roughness, and containing numerous inhomogeneities of arbitrary permittivities, conductivities, sizes, and locations. The impact of such an inhomogeneous ground model on the GPR signal is demonstrated. A simple detection algorithm is introduced and used to process these GPR signals. In addition to the transmitting and receiving antennas, the GPR unit is modeled with conducting and absorbing shield walls, which are employed to reduce the direct coupling to the receiver. Perfectly matched layer absorbing boundary condition is used for both simulating the physical absorbers inside the FDTD computational domain and terminating the lossy and layered background medium at the borders.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize