Browsing by Subject "Computational studies"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access Application of the Ugi reaction with multiple amino acid-derived components: Synthesis and conformational evaluation of piperazine-based minimalist peptidomimetics(Royal Society of Chemistry, 2015) Stucchi, M.; Cairati, S.; Cetin-Atalay, R.; Christodoulou, M.S.; Grazioso G.; Pescitelli G.; Silvani, A.; Yildirim, D.C.; Lesma G.The concurrent employment of α-amino acid-derived chiral components such as aldehydes and α-isocyanoacetates, in a sequential Ugi reaction/cyclization two-step strategy, opens the door to the synthesis of three structurally distinct piperazine-based scaffolds, characterized by the presence of l-Ala and/or l-Phe-derived side chains and bearing appropriate functionalities to be easily applied in peptide chemistry. By means of computational studies, these scaffolds have been demonstrated to act as minimalist peptidomimetics, able to mimic a well defined range of peptide secondary structures and therefore potentially useful for the synthesis of small-molecule PPI modulators. Preliminary biological evaluation of two different resistant hepatocellular carcinoma cellular lines, for which differentiation versus resistance ability seem to be strongly correlated with well defined types of PPIs, has revealed a promising antiproliferative activity for selected compounds. © The Royal Society of Chemistry 2015.Item Open Access A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations(Elsevier Ltd, 2017) Ozbaygin G.; Ekin Karasan O.; Savelsbergh M.; Yaman, H.We study the vehicle routing problem with roaming delivery locations in which the goal is to find a least-cost set of delivery routes for a fleet of capacitated vehicles and in which a customer order has to be delivered to the trunk of the customer's car during the time that the car is parked at one of the locations in the (known) customer's travel itinerary. We formulate the problem as a set-covering problem and develop a branch-and-price algorithm for its solution. The algorithm can also be used for solving a more general variant in which a hybrid delivery strategy is considered that allows a delivery to either a customer's home or to the trunk of the customer's car. We evaluate the effectiveness of the many algorithmic features incorporated in the algorithm in an extensive computational study and analyze the benefits of these innovative delivery strategies. The computational results show that employing the hybrid delivery strategy results in average cost savings of nearly 20% for the instances in our test set. © 2017 Elsevier LtdItem Open Access An intermodal multicommodity routing problem with scheduled services(2012) Ayar, B.; Yaman, H.We study a multicommodity routing problem faced by an intermodal service operator that uses ground and maritime transportation. Given a planning horizon, a set of commodities to be picked up at their release times and to be delivered not later than their duedates, the problem is to decide on routes for these commodities using trucks and scheduled and capacitated maritime services at minimum cost of transportation and stocking at the seaports. Two mixed integer programming formulations and valid inequalities are proposed for this problem. The results of a computational study to evaluate the strength of the linear programming relaxations and the solution times are reported.Item Open Access Minimizing weighted mean absolute deviation of job completion times from their weighted mean(Elsevier, 2011) Erel, E.; Ghosh, J. B.We address a single-machine scheduling problem where the objective is to minimize the weighted mean absolute deviation of job completion times from their weighted mean. This problem and its precursors aim to achieve the maximum admissible level of service equity. It has been shown earlier that the unweighted version of this problem is NP-hard in the ordinary sense. For that version, a pseudo-polynomial time dynamic program and a 2-approximate algorithm are available. However, not much (except for an important solution property) exists for the weighted version. In this paper, we establish the relationship between the optimal solution to the weighted problem and a related one in which the deviations are measured from the weighted median (rather than the mean) of the job completion times; this generalizes the 2-approximation result mentioned above. We proceed to give a pseudo-polynomial time dynamic program, establishing the ordinary NP-hardness of the problem in general. We then present a fully-polynomial time approximation scheme as well. Finally, we report the findings from a limited computational study on the heuristic solution of the general problem. Our results specialize easily to the unweighted case; they also lead to an approximation of the set of schedules that are efficient with respect to both the weighted mean absolute deviation and the weighted mean completion time. © 2011 Elsevier Inc. All rights reserved.Item Open Access Near-optimal modified base stock policies for the capacitated inventory problem with stochastic demand and fixed cost(World Scientific Publishing, 2014) Özener, O. Ö.; Güllü, R.; Erkip, N.In this study, we investigate a single-item, periodic-review inventory problem where the production capacity is limited and unmet demand is backordered. We assume that customer demand in each period is a stationary, discrete random variable. Linear holding and backorder cost are charged per unit at the end of a period. In addition to the variable cost charged per unit ordered, a positive fixed ordering cost is incurred with each order given. The optimization criterion is the minimization of the expected cost per period over a planning horizon. We investigate the infinite horizon problem by modeling the problem as a discrete-time Markov chain. We propose a heuristic for the problem based on a particular solution of this stationary model, and conduct a computational study on a set of instances, providing insight on the performance of the heuristic.Item Open Access New formulations for the hop-constrained minimum spanning tree problem via Sherali and Driscoll's tightened Miller-Tucker-Zemlin constraints(Elsevier, 2010) Akgün, İbrahimGiven an undirected network with positive edge costs and a natural number p, the hop-constrained minimum spanning tree problem (HMST) is the problem of finding a spanning tree with minimum total cost such that each path starting from a specified root node has no more than p hops (edges). In this paper, the new models based on the Miller-Tucker-Zemlin (MTZ) subtour elimination constraints are developed and computational results together with comparisons against MTZ-based, flow-based, and hop-indexed formulations are reported. The first model is obtained by adapting the MTZ-based Asymmetric Traveling Salesman Problem formulation of Sherali and Driscoll [18] and the other two models are obtained by combining topology-enforcing and MTZ-related constraints offered by Akgün and Tansel (submitted for publication) [20] for HMST with the first model appropriately. Computational studies show that the best LP bounds of the MTZ-based models in the literature are improved by the proposed models. The best solution times of the MTZ-based models are not improved for optimally solved instances. However, the results for the harder, large-size instances imply that the proposed models are likely to produce better solution times. The proposed models do not dominate the flow-based and hop-indexed formulations with respect to LP bounds. However, good feasible solutions can be obtained in a reasonable amount of time for problems for which even the LP relaxations of the flow-based and hop-indexed formulations can be solved in about 2 days. © 2010 Elsevier Ltd. All rights reserved.Item Open Access Robust scheduling and robustness measures for the discrete time/cost trade-off problem(Elsevier, 2010) Hazır, O.; Haouari, M.; Erel, E.Projects are often subject to various sources of uncertainties that have a negative impact on activity durations and costs. Therefore, it is crucial to develop effective approaches to generate robust project schedules that are less vulnerable to disruptions caused by uncontrollable factors. In this paper, we investigate the robust discrete time/cost trade-off problem, which is a multi-mode project scheduling problem with important practical relevance. We introduce surrogate measures that aim at providing an accurate estimate of the schedule robustness. The pertinence of each proposed measure is assessed through computational experiments. Using the insights revealed by the computational study, we propose a two-stage robust scheduling algorithm. Finally, we provide evidence that the proposed approach can be extended to solve a complex robust problem with tardiness penalties and earliness revenues. © 2010 Elsevier B.V. All rights reserved.Item Open Access Scheduling beams with different priorities on a military surveillance radar(Institute of Electrical and Electronics Engineers, 2012) Taner, M. R.; Karasan O. E.; Yavuzturk, E.The problem of scheduling the searching, verification, and tracking tasks of a ground based, three-dimensional military surveillance radar is studied. Although the radar is mechanically steered in the sense that a servomechanism rotates the antenna at a constant turn rate, it has limited electronic steering capability in azimuth. The scheduling problem arises within a planning period during which the antenna scans a given physical range. A task/job corresponds to sending a transmission beam to hit a particular target. Targets are allowed to be hit with an angular deviation up to a predetermined magnitude. The steering mechanism of the radar helps alter these deviations by imposing a scan-off angle from broadside on the transmission beam. A list of jobs along with their priority weights, processing times, and ideal beam positions are given during a predetermined planning period. The ideal beam position for a given job allows hitting the corresponding target with zero deviation. Each job also has a set of available scan-off angles. It is possible to map the antennas physical position, beam positions, scan-off angles, and angular deviations to a time scale. The goal is to select the subset of jobs to be processed during the given planning period and determining the starting time and scan-off angle for each selected job. The objectives are to simultaneously minimize the weighted number of unprocessed jobs and the total weighted deviation. An integer programming model and two versions of a heuristic mechanism that relies on the exact solution of a special case are proposed. Results of a computational study are presented.Item Open Access Star p-hub center problem and star p-hub median problem with bounded path lengths(2012) Yaman H.; Elloumi, S.We consider two problems that arise in designing two-level star networks taking into account service quality considerations. Given a set of nodes with pairwise traffic demand and a central hub, we select p hubs and connect them to the central hub with direct links and then we connect each nonhub node to a hub. This results in a star/star network. In the first problem, called the Star p-hub Center Problem, we would like to minimize the length of the longest path in the resulting network. In the second problem, Star p-hub Median Problem with Bounded Path Lengths, the aim is to minimize the total routing cost subject to upper bound constraints on the path lengths. We propose formulations for these problems and report the outcomes of a computational study where we compare the performances of our formulations.