Browsing by Subject "Computational electromagnetics (CEM)"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Efficient solution of the combined-field integral equation with the parallel multilevel fast multipole algorithm(IEEE, 2007-08) Gürel, Levent; Ergül, ÖzgürWe present fast and accurate solutions of large-scale scattering problems formulated with the combined-field integral equation. Using the multilevel fast multipole algorithm (MLFMA) parallelized on a cluster of computers, we easily solve scattering problems that are discretized with tens of millions of unknowns. For the efficient parallelization of MLFMA, we propose a hierarchical partitioning scheme based on distributing the multilevel tree among the processors with an improved load-balancing. The accuracy of the solutions is demonstrated on scattering problems involving spheres of various radii from 80λ to 110λ. In addition to canonical problems, we also present the solution of real-life problems involving complicated targets with large dimensions. © 2007 IEEE.Item Open Access Fast and accurate solutions of scattering problems involving dielectric objects with moderate and low contrasts(IEEE, 2007-08) Ergül, Özgür; Gürel, LeventWe consider the solution of electromagnetic scattering problems involving relatively large dielectric objects with moderate and low contrasts. Three-dimensional objects are discretized with Rao-Wilton-Glisson functions and the scattering problems are formulated with surface integral equations. The resulting dense matrix equations are solved iteratively by employing the multilevel fast multipole algorithm. We compare the accuracy and efficiency of the results obtained by employing various integral equations for the formulation of the problem. If the problem size is large, we show that a combined formulation, namely, electric-magnetic current combined-field integral equation, provides faster iterative convergence compared to other formulations, when it is accelerated with an efficient block preconditioner. For low-contrast problems, we introduce various stabilization procedures in order to avoid the numerical breakdown encountered in the conventional surface formulations. © 2007 IEEE.Item Open Access Memory-efficient multilevel physical optics algorithm for fast computation of scattering from three-dimensional complex targets(IEEE, 2007) Manyas, Alp; Gürel, LeventMultilevel physical optics (MLPO) algorithm provides a speed-up for computing the physical-optics integral over complex bodies for a range of aspect angles and frequencies. On the other hand, when computation of the RCS pattern as a function of θ, φ, and frequency is desired, the O N3 memory complexity of the algorithm may prevent the solution of electrically large problems. In this paper, we propose an improved version of the MLPO algorithm, for which the memory complexity is reduced to O N2 log N . The algorithm is based on the aggregation of only some portion of the scattering patterns at each aggregation step. This way, memory growth in each step is prevented, and a significant amount of saving is achieved.Item Open Access MLFMA solutions of transmission problems Involving realistic metamaterial walls(IEEE, 2007-08) Ergül, Özgür; Ünal, Alper; Gürel, LeventWe present the solution of multilayer metamaterial (MM) structures containing large numbers of unit cells, such as split-ring resonators. Integral-equation formulations of scattering problems are solved iteratively by employing a parallel implementation of the multilevel fast multipole algorithm. Due to ill-conditioned nature of the problems, advanced preconditioning techniques are used to obtain rapid convergence in the iterative solutions. By constructing a sophisticated simulation environment, we accurately and efficiently investigate large and complicated MM structures. © 2007 IEEE.Item Open Access Parallel preconditioners for solutions of dense linear systems with tens of millions of unknowns(2007-11) Malas, Tahir; Ergül, Özgür; Gürel, LeventWe propose novel parallel preconditioning schemes for the iterative solution of integral equation methods. In particular, we try to improve convergence rate of the ill-conditioned linear systems formulated by the electric-field integral equation, which is the only integral-equation formulation for targets having open surfaces. For moderate-size problems, iterative solution of the near-field system enables much faster convergence compared to the widely used sparse approximate inverse preconditioner. For larger systems, we propose an approximation strategy to the multilevel fast multipole algorithm (MLFMA) to be used as a preconditioner. Our numerical experiments reveal that this scheme significantly outperforms other preconditioners. With the combined effort of effective preconditioners and an efficiently parallelized MLFMA, we are able to solve targets with tens of millions of unknowns, which are the largest problems ever reported in computational electromagnetics. ©2007 IEEE.