Browsing by Subject "Computational Methods"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Comparison of multilevel methods for kronecker-based Markovian representations(Springer, 2004) Buchholz, P.; Dayar T.The paper presents a class of numerical methods to compute the stationary distribution of Markov chains (MCs) with large and structured state spaces. A popular way of dealing with large state spaces in Markovian modeling and analysis is to employ Kronecker-based representations for the generator matrix and to exploit this matrix structure in numerical analysis methods. This paper presents various multilevel (ML) methods for a broad class of MCs with a hierarchcial Kronecker structure of the generator matrix. The particular ML methods are inspired by multigrid and aggregation-disaggregation techniques, and differ among each other by the type of multigrid cycle, the type of smoother, and the order of component aggregation they use. Numerical experiments demonstrate that so far ML methods with successive over-relaxation as smoother provide the most effective solvers for considerably large Markov chains modeled as HMMs with multiple macrostates.Item Open Access Functionalization of (n,0) CNTs (n=3-16) by uracil: DFT studies(Springer Heidelberg, 2018) Mirzaei, M.; Harismah, K.; Jafari, E.; Gülseren, Oğuz; Rad, A. S.Density functional theory (DFT) calculations were performed to investigate stabilities and properties for uracil (U)-functionalized carbon nanotubes (CNTs). To this aim, the optimized molecular properties were evaluated for (n, 0) models of CNTs (n = 3-16) in the original and U-functionalized forms. The results indicated that the dipole moments and energy gaps were independent of tubular diameters whereas the binding energies showed that the U-functionalization could be better achieved for n = 8-11 curvatures of (n, 0) CNTs. Further studies based on the evaluated atomic-scale properties, including quadrupole coupling constants (CQ), indicated that the electronic properties of atoms could detect the effects of diameters variations of (n, 0) CNTs, in which the effects were very much significant for the atoms around the U-functionalization regions. Finally, the achieved results of singular U, original CNTs, and CNT-U hybrids were compared to each other to demonstrate the stabilities and properties for the U-functionalized (n, 0) CNTs.Item Open Access A parallel progressive radiosity algorithm based on patch data circulation(Pergamon Press, 1996) Aykanat, Cevdet; Çapin, T. K.; Özgüç, B.Abstract - Current research on radiosity has concentrated on increasing the accuracy and the speed of the solution. Although algorithmic and meshing techniques decrease the execution time, still excessive computational power is required for complex scenes. Hence, parallelism can be exploited for speeding up the method further. This paper aims at providing a thorough examination of parallelism in the basic progressive refinement radiosity, and investigates its parallelization on distributed-memory parallel architectures. A synchronous scheme, based on static task assignment, is proposed to achieve better coherence for shooting patch selections. An efficient global circulation scheme is proposed for the parallel light distribution computations, which reduces the total volume of concurrent communication by an asymptotical factor. The proposed parallel algorithm is implemented on an Intel's iPSC/2 hypercube multicomputer. Load balance qualities of the proposed static assignment schemes are evaluated experimentally. The effect of coherence in the parallel light distribution computations on the shooting patch selection sequence is also investigated. Theoretical and experimental evaluation is also presented to verify that the proposed parallelization scheme yields equally good performance on multicomputers implementing the simplest (e.g. ring) as well as the richest (e.g. hypercube) interconnection topologies. This paper also proposes and presents a parallel load re-balancing scheme which enhances our basic parallel radiosity algorithm to be usable in the parallelization of radiosity methods adopting adaptive subdivision and meshing techniques. Copyright © 1996 Elsevier Science Ltd.Item Open Access A parallel scaled conjugate-gradient algorithm for the solution phase of gathering radiosity on hypercubes(Springer, 1997) Kurç, T. M.; Aykanat, Cevdet; Özgüç, B.Gathering radiosity is a popular method for investigating lighting effects in a closed environment. In lighting simulations, with fixed locations of objects and light sources, the intensity and color and/or reflectivity vary. After the form-factor values are computed, the linear system of equations is solved repeatedly to visualize these changes. The scaled conjugate-gradient method is a powerful technique for solving large sparse linear systems of equations with symmetric positive definite matrices. We investigate this method for the solution phase. The nonsymmetric form-factor matrix is transformed into a symmetric matrix. We propose an efficient data redistribution scheme to achieve almost perfect load balance. We also present several parallel algorithms for form-factor computation.