Browsing by Subject "Complex source points"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Analysis of a thin, penetrable, and nonuniformly loaded cylindrical reflector illuminated by a complex line source(Institution of Engineering and Technology, 2017) Oğuzer, T.; Kuyucuoglu, F.; Avgin, I.; Altıntaş, A.A thin, penetrable, and cylindrical reflector is illuminated by the incident field of a complex source point. The scattered field inside the reflector is not considered and its effect is modelled through a thin layer generalised boundary condition (GBC). The authors formulate the structure as an electromagnetic boundary value problem and two resultant coupled singular integral equation system of equations are solved by using regularisation techniques. The GBC provides us to simulate the thin layer better than the resistive model which is applicable only for very thin sheets. Hence, the more reliable data can be obtained for high-contrast and low-loss dielectric material. The scattering and absorption characteristics of the front-fed and offset reflectors are obtained depending on system parameters. Also, the effects of the edge loading are examined for both E- and Hpolarisations. The convergence and the accuracy of the formulation are verified in reasonable computational running time.Item Open Access Analysis of an arbitrary conic section profile and thin dielectric cylindrical reflector illuminated by an E-polarized complex source point beam(IEEE, 2012) Oǧuzer, T.; Kuyucuoǧlu F.; Avgin I.; Altıntaş, AyhanWe simulated arbitrary conic section profile and thin layer dielectric reflector using the Method of Analytical Regularization (MAR) techniques. The reflector is assumed to be illuminated by a complex source point type feed antenna in E-polarization mode. We obtained excellent accuracy and convergence of our simulation. © 2012 IEEE.Item Open Access Effect of the off-focus shift of the feed on the radiation characteristics of a 2-D parabolic reflector antenna(IEEE, 2010) Oğuzer, T.; Altıntaş, A.; Nosich, AlexanderThe parabolic reflector antennas are widely used in the telecommunication systems and generally have large aperture sizes like 50λ to 80λ and larger. Their reliable full-wave analysis with the conventional Method of Moments (MoM) or with the other numerical methods is difficult because of inaccessible speed and accuracy. This statement is valid both for 3D and 2D reflector antennas in both polarizations. The Method of Analytical Regularization (MAR) constitutes an alternative solution compared to the ordinary MoM, which can provide only 1-2 digit accuracy. It provides finer accuracy within a reasonable computation time because the computational error can be decreased simply by increasing the matrix size in MAR. We have previously developed this method for the accurate simulation of the arbitrary conical section profile 2D reflector antennas, and the corresponding codes have provided us with accurate benchmark data. Here we study a similar problem however with the feed simulated by Complex Source Point (CSP) source located at an off-focus point on the symmetry axis of a front-fed reflector antenna. The numerical results are presented for the radiation characteristics including the forward and backward directivities and the radiation patterns in all directions. © 2010 IEEE.Item Open Access Radiation characteristics of a 2D parabolic reflector antenna excited by the H-polarized complex source(IEEE, 2002-09) Oğuzer, T.; Nosich, A. I.; Altıntaş, AyhanThe aim of this paper is to obtain accurate reference data for relatively large and realistic reflector antenna systems. We concentrate on a parabolic reflector antenna in the H-polarization case. The directive primary feed is modeled by the complex source point method and the relative accuracy of the results is verified. © 2002 IEEE.Item Open Access Simulating a wavelength-size 2-D lens with an accurate numerical method(IEEE, 2001) Boriskin, A. V.; Nosich, A. I.; Altıntaş, AyhanThe effect of a localized light source directivity improvement due to an arbitrarily shaped dielectric cylinder taken as a 2-D model of a dielectric lens is studied. The source is simulated by the field of a complex source-point (CSP). An efficient algorithm for the solution of 2-D problem of wave scattering by a smooth dielectric cylinder is developed, based on the concept of analytical regularization. The basic properties of the algorithm are studied. Numerical results for the accuracy of the algorithm and sample far-field characteristics such as the total radiated power, directivity and radiation patterns for various lens parameters are presented.