Browsing by Subject "Completely monotone"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Comments on 'a Representation for the Symbol Error Rate Using Completely Monotone Functions'(Institute of Electrical and Electronics Engineers Inc., 2014) Dulek, B.It was shown in the above-titled paper by Rajan and Tepedelenlioglu (see ibid., vol. 59, no. 6, p. 3922-31, June 2013) that the symbol error rate (SER) of an arbitrary multidimensional constellation subject to additive white Gaussian noise is characterized as the product of a completely monotone function with a nonnegative power of signal-to-noise ratio (SNR) under minimum distance detection. In this comment, it is proved that the probability of correct decision of an arbitrary constellation admits a similar representation as well. Based on this fact, it is shown that the stochastic ordering { G α} proposed by the authors as an extension of the existing Laplace transform order to compare the average SERs over two different fading channels actually predicts that the average SERs are equal for any constellation of dimensionality smaller than or equal to 2α. Furthermore, it is noted that there are no positive random variables X1 and X2 such that the proposed stochastic ordering is satisfied in the strict sense, i.e., X1<Gα X2, when α=N/2 for any positive integer N. Additional remarks are noted about the fading scenarios at low SNR and the generalization to additive compound Gaussian noise originally discussed in the subject paper.Item Open Access Universal bounds on the derivatives of the symbol error rate for arbitrary constellations(2014) Dulek, B.The symbol error rate (SER) of the minimum distance detector under additive white Gaussian noise is studied in terms of generic bounds and higher order derivatives for arbitrary constellations. A general approach is adopted so that the recent results on the convexity/concavity and complete monotonicity properties of the SER can be obtained as special cases. Novel universal bounds on the SER, which depend only on the constellation dimensionality, minimum and maximum constellation distances are obtained. It is shown that the sphere hardening argument in the channel coding theorem can be derived using the proposed bounds. Sufficient conditions based on the positive real roots (with odd multiplicity) of an explicitly-specified polynomial are presented to determine the signs of the SER derivatives of all orders in signal-to-noise ratio. Furthermore, universal bounds are given for the SER derivatives of all orders. As an example, it is shown that the proposed bounds yield a better characterization of the SER for arbitrary two-dimensional constellations over the complete monotonicity property derived recently. © 2014 IEEE.