Browsing by Subject "Complementary formulation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A numerical algorithm to model wall slip and cavitation in two-dimensional hydrodynamically lubricated contacts(Elsevier Ltd, 2023-03-23) Çam, Mert Yusuf; Giacopini, M.; Dini, D.; Biancofiore, LucaHydrodynamic lubrication takes a fundamental role in mechanical systems to reduce energy losses and prevent mechanical breakdown. The analytic instrument usually adopted to describe hydrodynamic lubrication is the Reynolds equation, which in its simplest statement for monophase lubricants and with assuming no fluid slip at the walls, is a linear equation in the hydrodynamic pressure. However, this classical linear Reynolds equation cannot reflect all the lubricant characteristics in engineered surfaces (e.g. superhydro(oleo)phobic surfaces and textured surfaces). In these cases, the effect of two critical factors, such as wall slip and cavitation, need to be considered, introducing non-linearities in the system. In order to tackle this issue, a modified two-dimensional Reynolds equation is introduced, able to capture both the cavitation presence, via a complementary mass-conserving model, and wall slippage, starting from the multi-linearity description introduced by Ma et al. (2007). In addition, an alternative model for the slippage at the wall is proposed by modifying the multi-linearity wall slip model to improve accuracy and computational cost. In this new model, the possible slip directions are limited to three, separated by equal angles, with the slip occurring only along the first direction, and the other directions, then, used to iteratively adjust the direction of slippage, until a suitable convergence criterion is satisfied. The proposed mathematical model is validated versus results available in literature with tests performed on (i) journal bearings, (ii) slider bearings, (iii) squeeze dampers, and (iv) surface textured bearings. By conducting these tests, the proposed alternative wall slip model is proved to be up to one order of magnitude more computational efficient than the original multi-linearity wall slip model.Item Open Access Interplay between wall slip and cavitation: a complementary variable approach(Elsevier, 2019) Biancofiore, Luca; Giacopini, M.; Dini, D.In this work a stable and reliable numerical model based on complementary variables is developed to study lubricated contacts characterised by slip at one or both surfaces and in the presence of cavitation. This model can be used to predict surface behaviour when cavitation induced by e.g. the presence of surface texture, slip, or a combination of the two is encountered, with varying surface parameters. For this purpose, two different algorithms are coupled to predict the formation of cavitation, through a mass-conserving formulation, and the presence of slip at the wall. The possible slippage is described by a limiting shear criterion formulated using a Tresca model. To show the flexibility of our model, several bearing geometries have been analysed, such as a twin parabolic slider, a cosine profile used to mimic a bearing, and a pocketed slider bearing employed to study the effect of surface texture. We observe that the lubrication performance (i.e. low friction coefficient) can be improved by using materials that promote slippage at the moving wall. The location of the slippage region can be optimised to find the lowest value of friction coefficient. Our theoretical developments and numerical implementation are shown to produce useful guidelines to improve and optimise the design of textured superoleophobic surfaces in the presence of lubricated contacts.