BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Comorbidity"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Data mining experiments on the Angiotensin II-Antagonist in Paroxysmal Atrial Fibrillation (ANTIPAF-AFNET 2) trial: ‘exposing the invisible’
    (Oxford University Press, 2016) Okutucu, S.; Katircioglu-Öztürk, D.; Oto, E.; Güvenir, H. A.; Karaagaoglu, E.; Oto, A.; Meinertz, T.; Goette, A.
    Aims: The aims of this study include (i) pursuing data-mining experiments on the Angiotensin II-Antagonist in Paroxysmal Atrial Fibrillation (ANTIPAF-AFNET 2) trial dataset containing atrial fibrillation (AF) burden scores of patients with many clinical parameters and (ii) revealing possible correlations between the estimated risk factors of AF and other clinical findings or measurements provided in the dataset. Methods: Ranking Instances by Maximizing the Area under a Receiver Operating Characteristics (ROC) Curve (RIMARC) is used to determine the predictive weights (Pw) of baseline variables on the primary endpoint. Chi-square automatic interaction detector algorithm is performed for comparing the results of RIMARC. The primary endpoint of the ANTIPAF-AFNET 2 trial was the percentage of days with documented episodes of paroxysmal AF or with suspected persistent AF. Results: By means of the RIMARC analysis algorithm, baseline SF-12 mental component score (Pw = 0.3597), age (Pw = 0.2865), blood urea nitrogen (BUN) (Pw = 0.2719), systolic blood pressure (Pw = 0.2240), and creatinine level (Pw = 0.1570) of the patients were found to be predictors of AF burden. Atrial fibrillation burden increases as baseline SF-12 mental component score gets lower; systolic blood pressure, BUN and creatinine levels become higher; and the patient gets older. The AF burden increased significantly at age >76. Conclusions: With the ANTIPAF-AFNET 2 dataset, the present data-mining analyses suggest that a baseline SF-12 mental component score, age, systolic blood pressure, BUN, and creatinine level of the patients are predictors of AF burden. Additional studies are necessary to understand the distinct kidney-specific pathophysiological pathways that contribute to AF burden. Published on behalf of the European Society of Cardiology.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    DeepND: Deep multitask learning of gene risk for comorbid neurodevelopmental disorders
    (Cell Press, 2022-07-08) Beyreli, İlayda; Karakahya, Oğuzhan; Çiçek, A. Ercüment
    Autism spectrum disorder and intellectual disability are comorbid neurodevelopmental disorders with complex genetic architectures. Despite large-scale sequencing studies, only a fraction of the risk genes was identified for both. We present a network-based gene risk prioritization algorithm, DeepND, that performs cross-disorder analysis to improve prediction by exploiting the comorbidity of autism spectrum disorder (ASD) and intellectual disability (ID) via multitask learning. Our model leverages information from human brain gene co-expression networks using graph convolutional networks, learning which spatiotemporal neurodevelopmental windows are important for disorder etiologies and improving the state-of-the-art prediction in single- and cross-disorder settings. DeepND identifies the prefrontal and motor-somatosensory cortex (PFC-MFC) brain region and periods from early- to mid-fetal and from early childhood to young adulthood as the highest neurodevelopmental risk windows for ASD and ID. We investigate ASD- and ID-associated copy-number variation (CNV) regions and report our findings for several susceptibility gene candidates. DeepND can be generalized to analyze any combinations of comorbid disorders. © 2022 The Author(s)
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Multitask learning of gene risk for autism spectrum disorder and intellectual disability
    (2020-10) Beyreli, İlayda
    Autism Spectrum Disorder (ASD) and Intellectual Disability (ID) are comorbid neurodevelopmental disorders with complex genetic architectures. Despite largescale sequencing studies only a fraction of the risk genes were identified for both. Here, we present a novel network-based gene risk prioritization algorithm named DeepND that performs cross-disorder analysis to improve prediction power by exploiting the comorbidity of ASD and ID via multitask learning. Our model leverages information from gene co-expression networks that model human brain development using graph convolutional neural networks and learns which spatiotemporal neurodevelopmental windows are important for disorder etiologies. We show that our approach substantially improves the state-of-the-art prediction power. We observe that both disorders are enriched in transcription regulators. Despite tight regulatory links in between ASD risk genes, such is lacking across ASD and ID risk genes or within ID risk genes. Finally, we investigate frequent ASD and ID associated copy number variation regions and confident false findings to suggest several novel susceptibility gene candidates. DeepND can be generalized to analyze any combinations of comorbid disorders.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback