BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Communication Hypergraph Model"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Partitioning sparse rectangular matrices for parallel computing of AAtX
    (1999-09) Uçar, Bora
    Many scientific applications involve repeated sparse matrix-vector and matrixtranspose-vector product computations. Graph and hypergraph partitioning based approaches used in the literature aim at minimizing the total communication volume while maintaining computational load balance through one dimensional partitioning of sparse matrices. In this thesis, we consider two approaches which consider minimizing both the total message count and communication volume while maintaining balance on the communication loads of the processors. Two communication schemes are investigated for the fold and expand operations needed in the parallel algorithm. For the global communication scheme, we show that the problem of minimizing concurrent communication volume can be formulated as the problem of permuting the sparse matrix into a singly-bordered block-diagonal form, where the total and concurrent message count is determined by the interconnection topology. For the personalized communication scheme, a two stage approach is proposed. In the first stage, the total communication volume is minimized while maintaining balance on the computational loads of the processors. In the second stage, a novel communication hypergraph model is proposed which enables the minimization of the total message count while maintaining balance on the communication loads of the processors through hypergraph-partitioning-like methods. The solution methods are tested on various matrices and results, which are quite attractive in terms of solution quality and running times, are obtained.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback