Browsing by Subject "Colorimetric detection"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Highly fluorescent pyrene-functional polystyrene copolymer nanofibers for enhanced sensing performance of TNT(American Chemical Society, 2015) Senthamizhan, A.; Celebioglu A.; Bayir, S.; Gorur, M.; Doganci, E.; Yilmaz, F.; Uyar, TamerA pyrene-functional polystyrene copolymer was prepared via 1,3-dipolar cycloaddition reaction (Sharpless-type click recation) between azide-functional styrene copolymer and 1-ethynylpyrene. Subsequently, nanofibers of pyrene-functional polystyrene copolymer were obtained by using electrospinning technique. The nanofibers thus obtained, found to preserve their parent fluorescence nature, confirmed the avoidance of aggregation during fiber formation. The trace detection of trinitrotoluene (TNT) in water with a detection limit of 5 nM was demonstrated, which is much lower than the maximum allowable limit set by the U.S. Environmental Protection Agency. Interestingly, the sensing performance was found to be selective toward TNT in water, even in the presence of higher concentrations of toxic metal pollutants such as Cd2+, Co2+, Cu2+, and Hg2+. The enhanced sensing performance was found to be due to the enlarged contact area and intrinsic nanoporous fiber morphology. Effortlessly, the visual colorimetric sensing performance can be seen by naked eye with a color change in a response time of few seconds. Furthermore, vapor-phase detection of TNT was studied, and the results are discussed herein. In terms of practical application, electrospun nanofibrous web of pyrene-functional polystyrene copolymer has various salient features including flexibility, reproducibility, and ease of use, and visual outputs increase their value and add to their advantage.Item Open Access A smartphone-based colorimetric PET sensor platform with molecular recognition via thermally initiated RAFT-mediated graft copolymerization(Elsevier, 2019) Kuşçuoğlu, C.; Güner, Hasan; Söylemez, M.; Güven, O.; Barsbay, MuratIn this work, we report a low-cost and easy-to-use molecularly-imprinted colorimetric sensor platform that can sense target analyte with high sensitivity and good selectivity. The platform has been examined for colorimetric detection and quantitation of a model textile dye, basic red 9 (BR9), by employing methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA) and cumyl dithiobenzoate (CDB) as functional monomer, crosslinker and RAFT agent, respectively. Benzophenone (BP), a photoinitiator, was covalently immobilized on the surface of poly(ethylene terephthalate) (PET) and then thermally activated by homolytic cleavage to form radicals on the surface that initiate RAFT-mediated grafting of a thin recognition layer. The molecularly imprinted polymer (MIP) layer of about 100 nm showed excellent removal of 76.7% target dye in 10 min and high selectivity compared to other similar dyes with an imprinting factor of 10.31 in the competitive environment. The resulting MIP grafted PET substrate was efficiently used as recognition unit in a smartphone-based colorimetric detection method using a color adaptation algorithm for point-of-care applications. Based on the obtained performance, it is promising to use the method for the detection and quantification of various analytes with chromophores.