Browsing by Subject "Colloidal nanoparticles"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Chemical funneling of colloidal gold nanoparticles on printed arrays of end-grafted polymers for plasmonic applications(American Chemical Society, 2020-06) Pekdemir, S.; Torun, İ.; Şakir, M.; Ruzi, M.; Rogers, J. A.; Önses, M. SerdarSpatially defined assembly of colloidal metallic nanoparticles is necessary for fabrication of plasmonic devices. In this study, we demonstrate high-resolution additive jet printing of end-functional polymers to serve as templates for directed self-assembly of nanoparticles into architectures with substantial plasmonic activity. The intriguing aspect of this work is the ability to form patterns of end-grafted poly(ethylene glycol) through printing on a hydrophobic layer that consists of fluoroalkylsilanes. The simultaneous dewetting of the underlying hydrophobic layer together with grafting of the printed polymer during thermal annealing enables fabrication of spatially defined binding sites for assembly of nanoparticles. The employment of electrohydrodynamic jet printing and aqueous inks together with reduction of the feature size during thermal annealing are critically important in achieving high chemical contrast patterns as small as ∼250 nm. Gold nanospheres of varying diameters selectively bind and assemble into nanostructures with reduced interparticle distances on the hydrophilic patterns of poly(ethylene glycol) surrounded with a hydrophobic background. The resulting plasmonic arrays exhibit intense and pattern-specific signals in surface-enhanced Raman scattering (SERS) spectroscopy. The localized seed-mediated growth of metallic nanostructures over the patterned gold nanospheres presents further routes for expanding the composition of the plasmonic arrays. A representative application in SERS-based surface encoding is demonstrated through large-area patterning of plasmonic structures and multiplex deposition of taggant molecules, all enabled by printing.Item Open Access SERS-active linear barcodes by microfluidic-assisted patterning(Elsevier, 2020-09-28) Pekdemir, S.; Ipekci, H. H.; Serhatlıoğlu, Murat; Elbuken, C.; Onses, M. S.Simple, low-cost, robust, and scalable fabrication of microscopic linear barcodes with high levels of complexity and multiple authentication layers is critical for emerging applications in information security and anti-counterfeiting. This manuscript presents a novel approach for fabrication of microscopic linear barcodes that can be visualized under Raman microscopy. Microfluidic channels are used as molds to generate linear patterns of end-grafted polymers on a substrate. These patterns serve as templates for area-selective binding of colloidal gold nanoparticles resulting in plasmonic arrays. The deposition of multiple taggant molecules on the plasmonic arrays via a second microfluidic mold results in a linear barcode with unique Raman fingerprints that are enhanced by the underlying plasmonic nanoparticles. The width of the bars is as small as 10 μm, with a total barcode length on the order of 100 μm. The simultaneous use of geometric and chemical security layers provides a high level of complexity challenging the counterfeiting of the barcodes. The additive, scalable, and inexpensive nature of the presented approach can be easily adapted to different colloidal nanomaterials and applications.