Browsing by Subject "Coherent interfaces"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Aspects of interface elasticity theory(Sage Publications Ltd., 2018) Javili, Ali; Ottosen, N. S.; Ristinmaa, M.; Mosler, J.Interfaces significantly influence the overall material response especially when the area-to-volume ratio is large, for instance in nanocrystalline solids. A well-established and frequently applied framework suitable for modeling interfaces dates back to the pioneering work by Gurtin and Murdoch on surface elasticity theory and its generalization to interface elasticity theory. In this contribution, interface elasticity theory is revisited and different aspects of this theory are carefully examined. Two alternative formulations based on stress vectors and stress tensors are given to unify various existing approaches in this context. Focus is on the hyper-elastic mechanical behavior of such interfaces. Interface elasticity theory at finite deformation is critically reanalyzed and several subtle conclusions are highlighted. Finally, a consistent linearized interface elasticity theory is established. We propose an energetically consistent interface linear elasticity theory together with its appropriate stress measures.Item Open Access Coherent energetic interfaces accounting for in-plane degradation(Springer Netherlands, 2016) Esmaeili, A.; Javili, A.; Steinmann, P.Interfaces can play a dominant role in the overall response of a body. The importance of interfaces is particularly appreciated at small length scales due to large area to volume ratios. From the mechanical point of view, this scale dependent characteristic can be captured by endowing a coherent interface with its own elastic resistance as proposed by the interface elasticity theory. This theory proves to be an extremely powerful tool to explain size effects and to predict the behavior of nano-materials. To date, interface elasticity theory only accounts for the elastic response of coherent interfaces and obviously lacks an explanation for inelastic interface behavior such as damage or plasticity. The objective of this contribution is to extend interface elasticity theory to account for damage of coherent interfaces. To this end, a thermodynamically consistent interface elasticity theory with damage is proposed. A local damage model for the interface is presented and is extended towards a non-local damage model. The non-linear governing equations and the weak forms thereof are derived. The numerical implementation is carried out using the finite element method and consistent tangents are listed. The computational algorithms are given in detail. Finally, a series of numerical examples is studied to provide further insight into the problem and to carefully elucidate key features of the proposed theory. © 2016, Springer Science+Business Media Dordrecht.