Browsing by Subject "Codes (standards)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Channel polarization: A method for constructing capacity-achieving codes(IEEE, 2008-07) Arıkan, ErdalA method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity I(W) of any given binary-input discrete memoryless channel (B-DMC) W. The symmetric capacity I(W) is the highest rate achievable subject to using the input letters of the channel equiprobably and equals the capacity C(W) if the channel has certain symmetry properties. Channel polarization refers to the fact that it is possible to synthesize, out of N independent copies of a given B-DMC W, a different set of N binary-input channels such that the capacities of the latter set, except for a negligible fraction of them, are either near 1 or near 0. This second set of N channels are well-conditioned for channel coding: one need only send data at full rate through channels with capacity near 1 and at 0 rate through the others. The main coding theorem about polar coding states that, given any B-DMC W with I(W) > 0 and any fixed 0 < δ < I(W), there exist finite constants n1 (W, δ) and c(W, δ) such that for all n ≥ n1, there exist polar codes with block length N = 2n, rate R > I(W)-δ, and probability of block decoding error Pe ≤ cN-1/4. The codes with this performance can be encoded and decoded within complexity O(N log N). © 2008 IEEE.Item Open Access Performance analysis of turbo codes over Rician fading channels with impulsive noise(IEEE, 2007) Ali, Syed Amjad; Ince, E.A.The statistical characteristics of impulsive noise differ greatly from those of Gaussian noise. Hence, the performance of conventional decoders, optimized for additive white Gaussian noise (AWGN) channels is not promising in non-Gaussian environments. In order to achieve improved performance in impulsive environments the decoder structure needs to be modified in accordance with the impulsive noise model. This paper provides performance analysis of turbo codes over fully interleaved Rician fading channels with Middleton's additive white Class-A impulsive noise (MAWCAIN). Simulation results for the memoryless Rician fading channels using coherent BPSK signaling for both the cases of ideal channel state information (ICSI) and no channel state information (NCSI) at the decoder are provided. An eight state turbo encoder having (1, 13/15, 13/15) generator polynomial is used throughout the analysis. The novelty of this work lies in the fact that this is an initial attempt to provide a detailed analysis of turbo codes over Rician fading channels with impulsive noise rather than AWGN. ©2007 IEEE.