BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Client server computer systems"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    ItemOpen Access
    Reducing query overhead through route learning in unstructured peer-to-peer network
    (Academic Press, 2009-05) Çıracı, Salim; Körpeoǧlu, İ.; Ulusoy, Özgür
    In unstructured peer-to-peer networks, such as Gnutella, peers propagate query messages towards the resource holders by flooding them through the network. This is, however, a costly operation since it consumes node and link resources excessively and often unnecessarily. There is no reason, for example, for a peer to receive a query message if the peer has no matching resource or is not on the path to a peer holding a matching resource. In this paper, we present a solution to this problem, which we call Route Learning, aiming to reduce query traffic in unstructured peer-to-peer networks. In Route Learning, peers try to identify the most likely neighbors through which replies can be obtained to submitted queries. In this way, a query is forwarded only to a subset of the neighbors of a peer, or it is dropped if no neighbor, likely to reply, is found. The scheme also has mechanisms to cope with variations in user submitted queries, like changes in the keywords. The scheme can also evaluate the route for a query for which it is not trained. We show through simulation results that when compared to a pure flooding based querying approach, our scheme reduces bandwidth overhead significantly without sacrificing user satisfaction. © 2008 Elsevier Ltd. All rights reserved.
  • No Thumbnail Available
    ItemOpen Access
    A simple and effective mechanism for stored video streaming with TCP transport and server-side adaptive frame discard
    (Elsevier, 2005) Gürses, E.; Akar, G. B.; Akar, N.
    Transmission control protocol (TCP) with its well-established congestion control mechanism is the prevailing transport layer protocol for non-real time data in current Internet Protocol (IP) networks. It would be desirable to transmit any type of multimedia data using TCP in order to take advantage of the extensive operational experience behind TCP in the Internet. However, some features of TCP including retransmissions and variations in throughput and delay, although not catastrophic for non-real time data, may result in inefficiencies for video streaming applications. In this paper, we propose an architecture which consists of an input buffer at the server side, coupled with the congestion control mechanism of TCP at the transport layer, for efficiently streaming stored video in the best-effort Internet. The proposed buffer management scheme selectively discards low priority frames from its head-end, which otherwise would jeopardize the successful playout of high priority frames. Moreover, the proposed discarding policy is adaptive to changes in the bandwidth available to the video stream. © 2004 Elsevier B.V. All rights reserved.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize