Browsing by Subject "Classification results"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Recognizing human actions from noisy videos via multiple instance learning(IEEE, 2013) şener, Fadime; Samet, Nermin; Duygulu, Pınar; Ikizler-Cinbis, N.In this work, we study the task of recognizing human actions from noisy videos and effects of noise to recognition performance and propose a possible solution. Datasets available in computer vision literature are relatively small and could include noise due to labeling source. For new and relatively big datasets, noise amount would possible increase and the performance of traditional instance based learning methods is likely to decrease. In this work, we propose a multiple instance learning-based solution in case of an increase in noise. For this purpose, each video is represented with spatio-temporal features, then bag-of-words method is applied. Then, using support vector machines (SVM), both instance-based learning and multiple instance learning classifiers are constructed and compared. The classification results show that multiple instance learning classifiers has better performance than instance based learning counterparts on noisy videos. © 2013 IEEE.Item Open Access Time-scale wavelet scattering using hyperbolic tangent function for vessel sound classification(IEEE, 2017-08-09) Can, Gökmen; Akbaş, Cem Emre; Çetin, A. EnisWe introduce a time-frequency scattering method using hyperbolic tangent function for vessel sound classification. The sound data is wavelet transformed using a two channel filter-bank and filter-bank outputs are scattered using tanh function. A feature vector similar to mel-scale cepstrum is obtained after a wavelet packed transform-like structure approximating the mel-frequency scale. Feature vectors of vessel sounds are classified using a support vector machine (SVM). Experimental results are presented and the new feature extraction method produces better classification results than the ordinary Mel-Frequency Cepstral Coefficients (MFCC) vectors. © EURASIP 2017.