BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Classification results"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Recognizing human actions from noisy videos via multiple instance learning
    (IEEE, 2013) şener, Fadime; Samet, Nermin; Duygulu, Pınar; Ikizler-Cinbis, N.
    In this work, we study the task of recognizing human actions from noisy videos and effects of noise to recognition performance and propose a possible solution. Datasets available in computer vision literature are relatively small and could include noise due to labeling source. For new and relatively big datasets, noise amount would possible increase and the performance of traditional instance based learning methods is likely to decrease. In this work, we propose a multiple instance learning-based solution in case of an increase in noise. For this purpose, each video is represented with spatio-temporal features, then bag-of-words method is applied. Then, using support vector machines (SVM), both instance-based learning and multiple instance learning classifiers are constructed and compared. The classification results show that multiple instance learning classifiers has better performance than instance based learning counterparts on noisy videos. © 2013 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Time-scale wavelet scattering using hyperbolic tangent function for vessel sound classification
    (IEEE, 2017-08-09) Can, Gökmen; Akbaş, Cem Emre; Çetin, A. Enis
    We introduce a time-frequency scattering method using hyperbolic tangent function for vessel sound classification. The sound data is wavelet transformed using a two channel filter-bank and filter-bank outputs are scattered using tanh function. A feature vector similar to mel-scale cepstrum is obtained after a wavelet packed transform-like structure approximating the mel-frequency scale. Feature vectors of vessel sounds are classified using a support vector machine (SVM). Experimental results are presented and the new feature extraction method produces better classification results than the ordinary Mel-Frequency Cepstral Coefficients (MFCC) vectors. © EURASIP 2017.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback