BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Classification performance"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Human activity recognition using tag-based radio frequency localization
    (Taylor and Francis Inc., 2016) Yurtman, A.; Barshan, B.
    This article provides a comparative study on the different techniques of classifying human activities using tag-based radio-frequency (RF) localization. A publicly available dataset is used where the position data of multiple RF tags worn on different parts of the human body are acquired asynchronously and nonuniformly. In this study, curves fitted to the data are resampled uniformly and then segmented. We investigate the effect on system accuracy of varying the relevant system parameters. We compare various curve-fitting, segmentation, and classification techniques and present the combination resulting in the best performance. The classifiers are validated using 5-fold and subject-based leave-one-out cross validation, and for the complete classification problem with 11 classes, the proposed system demonstrates an average classification error of 8.67% and 21.30%, respectively. When the number of classes is reduced to five by omitting the transition classes, these errors become 1.12% and 6.52%, respectively. The results indicate that the system demonstrates acceptable classification performance despite that tag-based RF localization does not provide very accurate position measurements.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Machine-based learning system: classification of ADHD and non-ADHD participants
    (IEEE, 2017) Öztoprak, H.; Toycan, M.; Alp, Y. K.; Arıkan, Orhan; Doğutepe, E.; Karakaş, S.
    Attention-deficit/hyperactivity disorder (ADHD) is the most frequent diagnosis among children who are referred to psychiatry departments. Although ADHD was discovered at the beginning of the 20th century, its diagnosis is confronted with many problems. In this paper, a novel classification approach that discriminates ADHD and non-ADHD groups over the time-frequency domain features of ERP recordings is presented. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) was used to obtain best discriminating features. When only three of these features were used the accuracy of classification reached to 98%, and use of six features further improved classification accuracy to 99.5%. The proposed scheme was tested with a new experimental setup and 100% accuracy is obtained. The results were obtained using RCV. The classification performance of this study suggests that TFHA can be employed as a core component of the diagnostic and prognostic procedures of various psychiatric illnesses.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Pulse doppler radar target recognition using a two-stage SVM procedure
    (IEEE, 2010-07-07) Eryildirim, A.; Onaran, I.
    It is possible to detect and classify moving and stationary targets using ground surveillance pulse-Doppler radars (PDRs). A two-stage support vector machine (SVM) based target classification scheme is described here. The first stage tries to estimate the most descriptive temporal segment of the radar echo signal and the target signal is classified using the selected temporal segment in the second stage. Mel-frequency cepstral coefficients of radar echo signals are used as feature vectors in both stages. The proposed system is compared with the covariance and Gaussian mixture model (GMM) based classifiers. The effects of the window duration and number of feature parameters over classification performance are also investigated. Experimental results are presented.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback