Browsing by Subject "Classification learning"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access A classification learning algorithm robust to irrelevant features(Springer, 1998-09) Güvenir, H. AltayPresence of irrelevant features is a fact of life in many realworld applications of classification learning. Although nearest-neighbor classification algorithms have emerged as a promising approach to machine learning tasks with their high predictive accuracy, they are adversely affected by the presence of such irrelevant features. In this paper, we describe a recently proposed classification algorithm called VFI5, which achieves comparable accuracy to nearest-neighbor classifiers while it is robust with respect to irrelevant features. The paper compares both the nearest-neighbor classifier and the VFI5 algorithms in the presence of irrelevant features on both artificially generated and real-world data sets selected from the UCI repository.Item Open Access Feature interval learning algorithms for classification(Elsevier BV, 2010) Dayanik, A.This paper presents Feature Interval Learning algorithms (FIL) which represent multi-concept descriptions in the form of disjoint feature intervals. The FIL algorithms are batch supervised inductive learning algorithms and use feature projections of the training instances to represent induced classification knowledge. The concept description is learned separately for each feature and is in the form of a set of disjoint intervals. The class of an unseen instance is determined by the weighted-majority voting of the feature predictions. The basic FIL algorithm is enhanced with adaptive interval and feature weight schemes in order to handle noisy and irrelevant features. The algorithms are empirically evaluated on twelve data sets from the UCI repository and are compared with k-NN, k-NNFP, and NBC classification algorithms. The experiments demonstrate that the FIL algorithms are robust to irrelevant features and missing feature values, achieve accuracy comparable to the best of the existing algorithms with significantly less average running times. © 2010 Elsevier B.V. All rights reserved.Item Open Access Learning feature-projection based classifiers(Pergamon Press, 2012-03) Dayanik, A.This paper aims at designing better performing feature-projection based classification algorithms and presents two new such algorithms. These algorithms are batch supervised learning algorithms and represent induced classification knowledge as feature intervals. In both algorithms, each feature participates in the classification by giving real-valued votes to classes. The prediction for an unseen example is the class receiving the highest vote. The first algorithm, OFP.MC, learns on each feature pairwise disjoint intervals which minimize feature classification error. The second algorithm. GFP.MC, constructs feature intervals by greedily improving the feature classification error. The new algorithms are empirically evaluated on twenty datasets from the UCI repository and are compared with the existing feature-projection based classification algorithms (FILIF, VFI5, CFP, k-NNFP, and NBC). The experiments demonstrate that the OFP.MC algorithm outperforms other feature-projection based classification algorithms. The GFP.MC algorithm is slightly inferior to the OFP.MC algorithm, but, if it is used for datasets with large number of instances, then it reduces the space requirement of the OFP.MC algorithm. The new algorithms are insensitive to boundary noise unlike the other feature-projection based classification algorithms considered here. (C) 2011 Elsevier Ltd. All rights reserved.Item Open Access Modeling interestingness of streaming association rules as a benefit-maximizing classification problem(Elsevier BV, 2009) Aydın, T.; Güvenir, H. A.In a typical application of association rule learning from market basket data, a set of transactions for a fixed period of time is used as input to rule learning algorithms. For example, the well-known Apriori algorithm can be applied to learn a set of association rules from such a transaction set. However, learning association rules from a set of transactions is not a one time only process. For example, a market manager may perform the association rule learning process once every month over the set of transactions collected through the last month. For this reason, we will consider the problem where transaction sets are input to the system as a stream of packages. The sets of transactions may come in varying sizes and in varying periods. Once a set of transactions arrive, the association rule learning algorithm is executed on the last set of transactions, resulting in new association rules. Therefore, the set of association rules learned will accumulate and increase in number over time, making the mining of interesting ones out of this enlarging set of association rules impractical for human experts. We refer to this sequence of rules as "association rule set stream" or "streaming association rules" and the main motivation behind this research is to develop a technique to overcome the interesting rule selection problem. A successful association rule mining system should select and present only the interesting rules to the domain experts. However, definition of interestingness of association rules on a given domain usually differs from one expert to another and also over time for a given expert. This paper proposes a post-processing method to learn a subjective model for the interestingness concept description of the streaming association rules. The uniqueness of the proposed method is its ability to formulate the interestingness issue of association rules as a benefit-maximizing classification problem and obtain a different interestingness model for each user. In this new classification scheme, the determining features are the selective objective interestingness factors related to the interestingness of the association rules, and the target feature is the interestingness label of those rules. The proposed method works incrementally and employs user interactivity at a certain level. It is evaluated on a real market dataset. The results show that the model can successfully select the interesting ones. © 2008 Elsevier B.V. All rights reserved.