BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Classification algorithm"

Filter results by typing the first few letters
Now showing 1 - 6 of 6
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Alignment of uncalibrated images for multi-view classification
    (IEEE, 2011) Arık, Sercan Ömer; Vuraf, E.; Frossard P.
    Efficient solutions for the classification of multi-view images can be built on graph-based algorithms when little information is known about the scene or cameras. Such methods typically require a pair-wise similarity measure between images, where a common choice is the Euclidean distance. However, the accuracy of the Euclidean distance as a similarity measure is restricted to cases where images are captured from nearby viewpoints. In settings with large transformations and viewpoint changes, alignment of images is necessary prior to distance computation. We propose a method for the registration of uncalibrated images that capture the same 3D scene or object. We model the depth map of the scene as an algebraic surface, which yields a warp model in the form of a rational function between image pairs. The warp model is computed by minimizing the registration error, where the registered image is a weighted combination of two images generated with two different warp functions estimated from feature matches and image intensity functions in order to provide robust registration. We demonstrate the flexibility of our alignment method by experimentation on several wide-baseline image pairs with arbitrary scene geometries and texture levels. Moreover, the results on multi-view image classification suggest that the proposed alignment method can be effectively used in graph-based classification algorithms for the computation of pairwise distances where it achieves significant improvements over distance computation without prior alignment. © 2011 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Classification by voting feature intervals
    (Springer, 1997-04) Demiröz, Gülşen; Güvenir, H. Altay
    A new classification algorithm called VFI (for Voting Feature Intervals) is proposed. A concept is represented by a set of feature intervals on each feature dimension separately. Each feature participates in the classification by distributing real-valued votes among classes. The class receiving the highest vote is declared to be the predicted class. VFI is compared with the Naive Bayesian Classifier, which also considers each feature separately. Experiments on real-world datasets show that VFI achieves comparably and even better than NBC in terms of classification accuracy. Moreover, VFI is faster than NBC on all datasets. © Springer-Verlag Berlin Heidelberg 1997.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A classification learning algorithm robust to irrelevant features
    (Springer, 1998-09) Güvenir, H. Altay
    Presence of irrelevant features is a fact of life in many realworld applications of classification learning. Although nearest-neighbor classification algorithms have emerged as a promising approach to machine learning tasks with their high predictive accuracy, they are adversely affected by the presence of such irrelevant features. In this paper, we describe a recently proposed classification algorithm called VFI5, which achieves comparable accuracy to nearest-neighbor classifiers while it is robust with respect to irrelevant features. The paper compares both the nearest-neighbor classifier and the VFI5 algorithms in the presence of irrelevant features on both artificially generated and real-world data sets selected from the UCI repository.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Estimating the chance of success in IVF treatment using a ranking algorithm
    (Springer, 2015) Güvenir, H. A.; Misirli, G.; Dilbaz, S.; Ozdegirmenci, O.; Demir, B.; Dilbaz, B.
    In medicine, estimating the chance of success for treatment is important in deciding whether to begin the treatment or not. This paper focuses on the domain of in vitro fertilization (IVF), where estimating the outcome of a treatment is very crucial in the decision to proceed with treatment for both the clinicians and the infertile couples. IVF treatment is a stressful and costly process. It is very stressful for couples who want to have a baby. If an initial evaluation indicates a low pregnancy rate, decision of the couple may change not to start the IVF treatment. The aim of this study is twofold, firstly, to develop a technique that can be used to estimate the chance of success for a couple who wants to have a baby and secondly, to determine the attributes and their particular values affecting the outcome in IVF treatment. We propose a new technique, called success estimation using a ranking algorithm (SERA), for estimating the success of a treatment using a ranking-based algorithm. The particular ranking algorithm used here is RIMARC. The performance of the new algorithm is compared with two well-known algorithms that assign class probabilities to query instances. The algorithms used in the comparison are Naïve Bayes Classifier and Random Forest. The comparison is done in terms of area under the ROC curve, accuracy and execution time, using tenfold stratified cross-validation. The results indicate that the proposed SERA algorithm has a potential to be used successfully to estimate the probability of success in medical treatment.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Two-tier tissue decomposition for histopathological image representation and classification
    (Institute of Electrical and Electronics Engineers, 2015) Gultekin, T.; Koyuncu, C. F.; Sokmensuer, C.; Gunduz Demir, C.
    In digital pathology, devising effective image representations is crucial to design robust automated diagnosis systems. To this end, many studies have proposed to develop object-based representations, instead of directly using image pixels, since a histopathological image may contain a considerable amount of noise typically at the pixel-level. These previous studies mostly employ color information to define their objects, which approximately represent histological tissue components in an image, and then use the spatial distribution of these objects for image representation and classification. Thus, object definition has a direct effect on the way of representing the image, which in turn affects classification accuracies. In this paper, our aim is to design a classification system for histopathological images. Towards this end, we present a new model for effective representation of these images that will be used by the classification system. The contributions of this model are twofold. First, it introduces a new two-tier tissue decomposition method for defining a set of multityped objects in an image. Different than the previous studies, these objects are defined combining texture, shape, and size information and they may correspond to individual histological tissue components as well as local tissue subregions of different characteristics. As its second contribution, it defines a new metric, which we call dominant blob scale, to characterize the shape and size of an object with a single scalar value. Our experiments on colon tissue images reveal that this new object definition and characterization provides distinguishing representation of normal and cancerous histopathological images, which is effective to obtain more accurate classification results compared to its counterparts.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Voting features based classifier with feature construction and its application to predicting financial distress
    (Pergamon Press, 2010) Güvenir, H. A.; Çakır, M.
    Voting features based classifiers, shortly VFC, have been shown to perform well on most real-world data sets. They are robust to irrelevant features and missing feature values. In this paper, we introduce an extension to VFC, called voting features based classifier with feature construction, VFCC for short, and show its application to the problem of predicting if a bank will encounter financial distress, by analyzing current financial statements. The previously developed VFC learn a set of rules that contain a single condition based on a single feature in their antecedent. The VFCC algorithm proposed in this work, on the other hand, constructs rules whose antecedents may contain conjuncts based on several features. Experimental results on recent financial ratios of banks in Turkey show that the VFCC algorithm achieves better accuracy than other well-known rule learning classification algorithms. © 2009 Elsevier Ltd. All rights reserved.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback