Browsing by Subject "Chromatography"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Complete dissipation of 2, 4, 6-trinitrotoluene by in-vessel composting(Royal Society of Chemistry, 2015) Gumuscu, B.; Cekmecelioglu, D.; Tekinay, T.We demonstrate complete removal of 2,4,6-trinitrotoluene (TNT) in 15 days using an in-vessel composting system, which is amended with TNT-degrading bacteria strains. A mixture of TNT, food waste, manure, wood chips, soil and TNT-degrading bacteria consortium are co-composted for 15 days in an aerobic environment. Variations in the TNT degradation rates are assessed when composting reactors are operated at different carbon/nitrogen ratios (C/N), aeration rates, TNT concentrations and TNT-degrading bacteria inoculum loads. Changes in TNT concentrations are measured using high performance liquid chromatography, and C/N are determined using elemental analysis every 5 days. Temperature and moisture of the system are measured every 6 hours. Optimum TNT degradation performance is achieved by combining C/N of 20/1 and a 5 L min-1 aeration rate. Complete removal is achieved for TNT concentrations of 2, 10, and 100 g kg-1 in 15 days by the help of Citrobacter murliniae STE10, Achromobacter spanius STE11, Kluyvera cryocrescens STE12, and Enterobacter amnigenus STE13 bacteria strains. The final products of composting are used to cultivate four different plant seedlings for 10 weeks and showed no toxic effect, which is promising for the potential agricultural use of TNT-contaminated lands after remediation. © The Royal Society of Chemistry.Item Open Access Evaluation of an aldo-keto reductase gene signature with prognostic significance in colon cancer via activation of epithelial to mesenchymal transition and the p70S6K pathway(Oxford University Press, 2020-07) Demirkol Canlı, S.; Seza, E. G.; Sheraj, I.; Gömçeli, İ.; Turhan, N.; Carberry, S.; Prehn, J. H. M.; Güre, Ali Osmay; Banerjee, S.AKR1B1 and AKR1B10, members of the aldo-keto reductase family of enzymes that participate in the polyol pathway of aldehyde metabolism, are aberrantly expressed in colon cancer. We previously showed that high expression of AKR1B1 (AKR1B1HIGH) was associated with enhanced motility, inflammation and poor clinical outcome in colon cancer patients. Using publicly available datasets and ex vivo gene expression analysis (n = 51, Ankara cohort), we have validated our previous in silico finding that AKR1B1HIGH was associated with worse overall survival (OS) compared with patients with low expression of AKR1B1 (AKR1B1LOW) samples. A combined signature of AKR1B1HIGH and AKR1B10LOW was significantly associated with worse recurrence-free survival (RFS) in microsatellite stable (MSS) patients and in patients with distal colon tumors as well as a higher mesenchymal signature when compared with AKR1B1LOW/AKR1B10HIGH tumors. When the patients were stratified according to consensus molecular subtypes (CMS), AKR1B1HIGH/AKR1B10LOW samples were primarily classified as CMS4 with predominantly mesenchymal characteristics while AKR1B1LOW/AKR1B10HIGH samples were primarily classified as CMS3 which is associated with metabolic deregulation. Reverse Phase Protein Array carried out using protein samples from the Ankara cohort indicated that AKR1B1HIGH/AKR1B10LOW tumors showed aberrant activation of metabolic pathways. Western blot analysis of AKR1B1HIGH/AKR1B10LOW colon cancer cell lines also suggested aberrant activation of nutrient-sensing pathways. Collectively, our data suggest that the AKR1B1HIGH/AKR1B10LOW signature may be predictive of poor prognosis, aberrant activation of metabolic pathways, and can be considered as a novel biomarker for colon cancer prognostication.Item Open Access Pyrolysis mass spectrometric analysis of styrene-isoprene-styrene copolymers(Elsevier, 1999-05) Hacaloglu, J.; Fares, M. M.; Süzer, ŞefikThermal analysis of styrene±isoprene±styrene block copolymer, using the direct pyrolysis mass spectrometry (MS) technique, indicated that each block showed very similar thermal behavior with the corresponding homopolymer. The isoprene block was found to be thermally less stable, decomposing by random scissions followed by cyclization reactions. The more stable styrene block degraded by a radical depolymerization mechanism. With an indirect pyrolysis MS technique, it was found that production of benzene, toluene, 1-methyl cyclopentene and 1-methyl cyclohexene was more e ective when degradation was carried out in a closed reactor. # 1999 Elsevier Science Ltd. All rights reserved.