Browsing by Subject "Chemical bondings"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films(2011) Genisel, M. F.; Uddin, M. N.; Say, Z.; Kulakci, M.; Turan, R.; Gulseren, O.; Bengu, E.In this study, we implanted Nþ and Nþ 2 ions into sputter deposited amorphous boron carbide (a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In addition, we investigated the effect of implanted Cþ ions in sputter deposited amorphous boron nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical composition and bonding chemistry due to ion-implantation were examined at different depths of the films using sequential ion-beam etching and high resolution XPS analysis cycles. A comparative analysis has been made with the results from sputter deposited BCN films suggesting that implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with available boron atoms or, more likely bonded with other implanted carbon atoms. These results were also supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds were energetically preferable to carbon-boron and carbon-nitrogen bonds.Item Open Access Periodic mesoporous hydridosilica-synthesis of an "impossible" material and its thermal transformation into brightly photoluminescent periodic mesoporous nanocrystal silicon-silica composite(2011) Xie, Z.; Henderson, E. J.; Dag, Ö.; Wang, W.; Lofgreen, J. E.; Kübel, C.; Scherer, T.; Brodersen, P. M.; Gu, Zhong-Ze; Ozin, G. A.There has always been a fascination with "impossible" compounds, ones that do not break any rules of chemical bonding or valence but whose structures are unstable and do not exist. This instability can usually be rationalized in terms of chemical or physical restrictions associated with valence electron shells, multiple bonding, oxidation states, catenation, and the inert pair effect. In the pursuit of these "impossible" materials, appropriate conditions have sometimes been found to overcome these instabilities and synthesize missing compounds, yet for others these tricks have yet to be uncovered and the materials remain elusive. In the scientifically and technologically important field of periodic mesoporous silicas (PMS), one such "impossible" material is periodic mesoporous hydridosilica (meso-HSiO1.5). It is the archetype of a completely interrupted silica open framework material: its pore walls are comprised of a three-connected three-dimensional network that should be so thermodynamically unstable that any mesopores present would immediately collapse upon removal of the mesopore template. In this study we show that meso-HSiO1.5 can be synthesized by template-directed self-assembly of HSi(OEt)3 under aqueous acid-catalyzed conditions and after template extraction remains stable to 300 °C. Above this temperature, bond redistribution reactions initiate a metamorphic transformation which eventually yields periodic mesoporous nanocrystalline silicon-silica, meso-ncSi/SiO2, a nanocomposite material in which brightly photoluminescent silicon nanocrystallites are embedded within a silica matrix throughout the mesostructure. The integration of the properties of silicon nanocrystallinity with silica mesoporosity provides a wealth of new opportunities for emerging nanotechnologies.