BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Channels with synchronization errors"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A deep learning based decoder for concatenated coding over deletion channels
    (IEEE, 2024) Kargı, Eksal Uras; Duman, Tolga Mete
    In this paper, we introduce a deep learning-based decoder designed for concatenated coding schemes over a deletion/substitution channel. Specifically, we focus on serially concatenated codes, where the outer code is either a convolutional or a low-density parity-check (LDPC) code, and the inner code is a marker code. We utilize Bidirectional Gated Recurrent Units (BI-GRUs) as log-likelihood ratio (LLR) estimators and outer code decoders for estimating the message bits. Our results indicate that decoders powered by BI-GRUs perform comparably in terms of error rates with the MAP detection of the marker code. We also find that a single network can work well for a wide range of channel parameters. In addition, it is possible to use a single BI-GRU based network to estimate the message bits via one-shot decoding when the outer code is a convolutional code. 11Code is available at https://github.com/Bilkent-CTAR-Lab/DNN-for-Deletion-Channel
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Deep learning based decoders for concatenated codes over insertion and deletion channels
    (2025-01) Kargı, Eksal Uras
    Channels with synchronization errors, including insertion/deletion channels, are of significant importance, as they are encountered in various systems, such as communication networks and various storage technologies, including DNA data storage. Serially concatenated codes where the outer code is a powerful channel code, such as a low-density parity-check (LDPC) or convolutional code, and the inner code is a watermark or marker code, are shown to be effective solutions over such channels. In particular, the use of marker codes, referring to insertion of preselected sequences in the transmitted data stream periodically, are shown to work well in regaining synchronization at the receiver and achieving improved error rate performance compared to other alternatives. In the current literature, maximum a posteriori (MAP) detector realized by the well-known forward-backward algorithm is commonly employed to decode the inner marker code and estimate the log-likelihood ratios (LLRs) of the bits encoded by the outer code, and the resulting log-likelihood estimates are fed to the outer decoder to estimate the transmitted data. Alternative to the MAP detector, this thesis proposes deep learning-based solutions to estimate the LLRs of the coded bits in the paradigm of concatenated codes, exploiting the marker information and addressing some limitations of conventional methods. Bit-level deep learning-based detectors offer good alternatives when the channel statistics are not perfectly available at the decoder, degrading of the performance of the MAP detector. They can also be employed for one-shot decoding when the outer code is a convolutional code. Also developed are symbol-level deep learning-based detectors to exploit the correlations among adjacent bits at the detector output. Contrary to the existing symbol-level decoders for insertion/deletion channels, the newly proposed approaches can go beyond the case of combining three bits, offering further enhancements in performance while keeping the complexity tolerable. As a final contribution, deep learning-based detectors are developed for insertion and deletion channels that are further exacerbated by inter-symbol interference, e.g., modeling bit-patterned media recording channels, and their performance is studied via numerical examples.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback