Browsing by Subject "CeO2"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Influence of ceria on the NOx reduction performance of NOx storage reduction catalysts(Elsevier, 2013) Say, Z.; Vovk, E. I.; Bukhtiyarov, V. I.; Ozensoy, E.Influence of ceria on the NOx storage and reduction behavior of NSR catalysts was investigated in a systematic manner over γ-Al2O3, Ba/Al, Ce/Al, Ba/Ce/Al, Pt/Al, Pt/Ce/Al and Ba/Pt/Ce/Al systems using BET, XRD, Raman spectroscopy and in situ FTIR. Although ceria promotion does not seem to have a substantial influence on the overall NOx storage capacity, it does have a clearly positive effect on the NOx reduction via H2(g) during catalytic regeneration under rich conditions which is associated with the enhancement in the total amount of activated hydrogen on the catalyst surface and lowering of the thermal threshold for hydrogen activation. A strong metal support interaction (SMSI) between Pt sites and the BaOx/CeOx domains leads to a complex redox interplay including oxidation of the precious metal sites, reduction of ceria, formation of BaO2 species as well as the formation of Pt-O-Ce interfacial sites on the Ba/Pt/Ce/Al surface. Ceria domains also act as anchoring sites for Pt species, limit their surface diffusion, enhance dispersion and hinder sintering at elevated temperatures. On the Ba/Pt/Ce/Al catalyst surface, reduction of the stored nitrates under relatively mild conditions via H2(g) initially leads to the formation of surface -OH and -NHx species and gas phase N2O, as well as the destruction of surface nitrate species, leaving bulk nitrates mostly intact. Reduction proceeds with the conversion of N2O(g) into N2(g) along with the partial loss of surface -OH and -NHx groups, dehydration and the loss of bulk nitrates.Item Open Access Utilization of reducible mixed metal oxides as promoters for the enhancement of sulfur regeneration in nsr catalysts(2016-07) Samast, Zehra AybegümPt functionalized binary, ternary, and quaternary oxides (e.g. Pt/BaO/CeO2/ZrO2/Al2O3) were synthesized by wetness impregnation method and characterized by X-ray Diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, in-situ Fourier Transform Infrared (FTIR), and temperature programmed desorption (TPD) techniques. Effect of the synthesis sequence on the NOx storage capacity was investigated by synthesizing subsequently impregnated and co-impregnated ternary oxides. Influence of BaO loading on NOx uptake of quaternary oxides was examined by utilizing two different BaO loadings namely; 8 wt% and 20 wt% on co-impregnated ternary oxide, Pt10-10CeZrAl. Co-presence of CeO2-ZrO2 oxide domains leads to an increase in NOx storage. As BaO loading increases in quaternary oxides, thermal stabilities of nitrates and nitrites increase due to the formation of bulk/ionic nitrates. Although BaO impregnation on co-impregnated ternary oxides leads to a decrease in specific surface area (SSA) values due to sintering, NOx adsorption on BaO-functionalized quaternary oxides was found to be higher than the BaO deficient ternary oxides. Upon sulfur poisoning, formation of strongly bound bulk/ionic sulfate/sulfite functional groups on BaO containing catalysts result in a need for higher temperatures for complete sulfur regeneration. Comparison of the CeO2-ZrO2 promoted systems with that of the Pt/ 20 wt% Ba/Al2O3 conventional NOx Storage Reduction (NSR) catalyst suggests that ceria-zirconia promotion enhances the sulfur tolerance. In conclusion, in this study a new NSR catalyst namely, Pt20Ba10-10CeZrAl, which is promoted with reducible mixed metal oxides, was synthesized and characterized. This novel NSR catalyst formulation revealed favorable sulfur resistance with minor sacrifice in NOx storage ability.