Browsing by Subject "CdSe nanoplatelets"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access High-frequency EPR and ENDOR spectroscopy of Mn2+ ions in CdSe/CdMnS nanoplatelets(American Chemical Society, 2023-02-20) Babunts, Roman A.; Uspenskaya, Yulia A.; Romanov, Nikolai G.; Orlinskii, Sergei B.; Mamin, Georgy V.; Shornikova, Elena V.; Yakovlev, Dmitri R.; Bayer, M.; Işık, Furkan; Shendre, S.; Delikanlı, Savaş; Demir, Hilmi VolkanSemiconductor colloidal nanoplatelets based of CdSe have excellent optical properties. Their magneto-optical and spin-dependent properties can be greatly modified by implementing magnetic Mn2+ ions, using concepts well established for diluted magnetic semiconductors. A variety of magnetic resonance techniques based on high-frequency (94 GHz) electron paramagnetic resonance in continuous wave and pulsed mode were used to get detailed information on the spin structure and spin dynamics of Mn2+ ions in core/shell CdSe/(Cd,Mn)S nanoplatelets. We observed two sets of resonances assigned to the Mn2+ ions inside the shell and at the nanoplatelet surface. The surface Mn demonstrates a considerably longer spin dynamics than the inner Mn due to lower amount of surrounding Mn2+ ions. The interaction between surface Mn2+ ions and 1H nuclei belonging to oleic acid ligands is measured by means of electron nuclear double resonance. This allowed us to estimate the distances between the Mn2+ ions and 1H nuclei, which equal to 0.31 ± 0.04, 0.44 ± 0.09, and more than 0.53 nm. This study shows that the Mn2+ ions can serve as atomic-size probes for studying the ligand attachment to the nanoplatelet surface.Item Open Access Near-Infrared-Emitting five-monolayer thick copper-doped CdSe nanoplatelets(WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2019) Sharma, Ashma; Sharma, Manoj; Güngör, Kıvanç; Olutaş, Murat; Dede, Didem; Demir, Hilmi VolkanDoped nanocrystals are instrumental to the high‐performance luminescent solar concentrators (LSCs) and the color conversion devices. Recently, copper (Cu)‐doped three and four monolayer (ML) thick CdSe nanoplatelets (NPLs) have been shown superior to the existing Cu‐doped quantum dots (QDs) for their use in LSCs. However, additional improvement in the LSC performance can be achieved by further redshifting the emission into the near‐infrared (NIR) region of electromagnetic spectrum and increasing the absorbed portion of the solar irradiation. Cu‐doping into higher thicknesses of these atomically flat NPLs (e.g., ≥5 ML) can achieve these overarching goals. However, addition of the dopant ions during the nucleation stage disturbs this high‐temperature growth process and leads to multiple populations of NPLs and QDs. Here, by carefully controlling the precursor chemistry the successful doping of Cu in five ML thick NPLs by high‐temperature nucleation doping method is demonstrated. The optimized synthesis method shows nearly pure population of doped five ML thick NPLs, which possess ≈150 nm Stokes‐shifted NIR emission with high quantum yield of 65 ± 2%. Structural, elemental, and optical studies are conducted to confirm the successful doping and understand the detailed photophysics. Finally, these materials are tested experimentally and theoretically for their performance as promising LSC materials.Item Open Access Ultrathin highly luminescent two-monolayer colloidal CdSe nanoplatelets(WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2019) Delikanlı, Savaş; Yu, G.; Yeltik, Aydan; Bose, S.; Erdem, Talha; Yu, J.; Erdem, Onur; Sharma, Manoj; Sharma, Vijay Kumar; Quliyeva, Ulviyya; Shendre, S.; Dang, C.; Zhang, D.; Sum, T.; Fan, W.; Demir, Hilmi VolkanSurface effects in atomically flat colloidal CdSe nanoplatelets (NLPs) are significantly and increasingly important with their thickness being reduced to subnanometer level, generating strong surface related deep trap photoluminescence emission alongside the bandedge emission. Herein, colloidal synthesis of highly luminescent two‐monolayer (2ML) CdSe NPLs and a systematic investigation of carrier dynamics in these NPLs exhibiting broad photoluminescence emission covering the visible region with quantum yields reaching 90% in solution and 85% in a polymer matrix is shown. The astonishingly efficient Stokes‐shifted broadband photoluminescence (PL) emission with a lifetime of ≈100 ns and the extremely short PL lifetime of around 0.16 ns at the bandedge signify the participation of radiative midgap surface centers in the recombination process associated with the underpassivated Se sites. Also, a proof‐of‐concept hybrid LED employing 2ML CdSe NPLs is developed as color converters, which exhibits luminous efficacy reaching 300 lm Wopt−1. The intrinsic absorption of the 2ML CdSe NPLs (≈2.15 × 106 cm−1) reported in this study is significantly larger than that of CdSe quantum dots (≈2.8 × 105 cm−1) at their first exciton signifying the presence of giant oscillator strength and hence making them favorable candidates for next‐generation light‐emitting and light‐harvesting applications.