Browsing by Subject "CdSE nanoparticles"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Silica nanoparticle formation by using droplet-based microreactor(American Society of Mechanical Engineers, 2017) Nikdoost, Arsalan; Özkan, Alican; Kelestemur, Yusuf; Demir, Hilmi Volkan; Erdem, E. YeganThis paper describes a method for the synthesis of silica nanoparticles that can be later used for coating of quantum dots inside a microfluidic reactor. Here, a droplet-based system is used where two reagents were mixed inside the droplets to obtain silica. Particles in the size range of 25±2.7 nm were obtained with comparable size distribution to controlled batchwise synthesis methods. This method is suitable to be used later to coat CdSe nanoparticles inside the microreactor.Item Open Access Synthesis of stable mesostructured coupled semiconductor thin films: meso-CdS-TiO2 and meso-CdSe-TiO2(2010) Okur, H. İ.; Türker, Y.; Dag, Ö.Cd(II) ions can be incorporated into the channels of mesostructured titania films, using the evaporation-induced self-assembly (EISA) approach, up to a record high Cd/Ti mole ratio of 25%. The film samples were obtained by spin or dip coating from a mixture of 1-butanol, [Cd(H20)4] (N03)2, HNO3, and Ti(OC4H 9)4 and then aging the samples under 50% humidity at 30 0C (denoted as meso-xCd(II)-y TiO2). The nitrate ions, from nitric acid and cadmium nitrate, play important roles in the assembly process by coordinating as bidentate and bridged ligands to Cd(II) and Ti(IV) sites, respectively, in the mesostructured titania films. The film samples can be reacted under a H 2S (or H2Se) gas atmosphere to produce CdS (or CdSe) on the channel surface and/or pore walls. However, the presence of such a large number of nitrate ions in the film samples also yields an extensive amount of nitric acid upon H2S (or H2Se) reaction, where the nanoparticles are not stable (they undergo decomposition back to metal ion and H2S or H2Se gas). However, this problem can be overcome by further aging the samples at 130 °C for a few hours before H2S (or H2Se) reaction. This step removes about 90% of the nitrate ions, eliminates the nitric acid production step, and stabilizes the CdS nanoparticles on the surface and/or walls of the pores of the coupled semiconductor films, denoted as meso-xCdS-yTiO2. However, the H2Se reaction, additionally, needs to be carried at lower H2Se pressures in an N2 atmosphere to produce stable CdSe nanoparticles on the surface and/or walls of the pores of the films, denoted as meso-xCdSe-.yTiO2. Otherwise, an excessive number of Se8 particles form in the film samples.