BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Catalytic functionalities"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Direct evidence for the instability and deactivation of mixed-oxide systems: influence of surface segregation and subsurface diffusion
    (2011) Emmez, E.; Vovk, E. I.; Bukhtiyarov V. I.; Ozensoy, E.
    In the current contribution, we provide a direct demonstration of the thermally induced surface structural transformations of an alkaline-earth oxide/transition metal oxide interface that is detrimental to the essential catalytic functionality of such mixed-oxide systems toward particular reactants. The BaOx/TiO2/Pt(111) surface was chosen as a model interfacial system where the enrichment of the surface elemental composition with Ti atoms and the facile diffusion of Ba atoms into the underlying TiO2 matrix within 523 873 K leads to the formation of perovskite type surface species (BaTiO3/Ba2TiO4/BaxTiyOz). At elevated temperatures (T > 973 K), excessive surface segregation of Ti atoms results in an exclusively TiO2/TiOx-terminated surface which is almost free of Ba species. Although the freshly prepared BaOx/TiO2/Pt(111) surface can strongly adsorb ubiquitous catalytic adsorbates such as NO2 and CO2, a thermally deactivated surface at T > 973 K practically loses all of its NO2/CO2 adsorption capacity due to the deficiency of surface BaOx domains.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback