Browsing by Subject "Catalysts"
Now showing 1 - 17 of 17
- Results Per Page
- Sort Options
Item Open Access Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis(Royal Society of Chemistry, 2016) Gulseren, G.; Khalily, M. A.; Tekinay, A. B.; Güler, Mustafa O.Essential amino acids in catalytic sites of native enzymes are important in nature inspired catalyst designs. Active sites of enzymes contain the coordinated assembly of multiple amino acids, and catalytic action is generated by the dynamic interactions among multiple residues. However, catalysis studies are limited by the complex and dynamic structure of the enzyme; and it is difficult to exclusively attribute a given function to a specific residue. Minimalistic approaches involving artificial catalytic sites are promising for the investigation of the enzyme function in the absence of non-essential protein components, and self-assembling peptide nanostructures are especially advantageous in this context. Here we demonstrate the design and characterization of an enzyme-mimetic catalytic nanosystem presenting essential residues (Ser, His, Asp). The function of each residue and its combinations on the nanostructures in hydrolysis reaction was studied. The catalytic self-assembled nanostructures were used for efficient ester hydrolysis such as a model substrate (pNPA) and a natural substrate (acetylcholine) highlighting the key role of self-assembly in catalytic domain formation to test the efficiency of the de novo designed catalyst as a catalytic triad model.Item Open Access Conversion of wooden structures into porous SiC with shape memory synthesis(2011) Dhiman, R.; Petrunin V.; Rana, K.; Morgen P.Synthesis of structured silicon carbide materials can be accomplished using wooden materials as the carbon source, with various silicon impregnation techniques. We have explored the low cost synthesis of SiC by impregnation of carbon from wood with SiO gas at high temperatures, which largely retains the structure of the starting wood (shape memory synthesis). Suitably structured, porous SiC could prove to be an important type of catalyst support material. Shape memory synthesis (SMS) has earlier been tried on high surface area carbon materials. Here we have made an extensive study of SMS on carbon structures obtained from different types of wood. © 2011 Elsevier Ltd and Techna Group S.r.l.Item Open Access Cu-catalyzed selective mono-N-pyridylation: Direct access to 2-aminoDMAP/sulfonamides as bifunctional organocatalysts(2013) Isik, M.; Tanyeli, C.Direct and selective mono-N-pyridylation of trans-(R,R)-cyclohexane-1,2- diamine is described here. Facile preparation of a novel chiral 2-aminoDMAP core catalaphore via Cu catalysis has led to the development of various sulfonamide/2-aminoDMAPs as bifunctional acid/base organocatalysts (most in two steps overall), which have been shown to very effectively promote asymmetric conjugate addition of acetylacetone to trans-β-nitroolefins with good to excellent yields (87-93%) and enantioselectivites (up to 99%). © 2013 American Chemical Society.Item Open Access Fabrication of mesoporous CuO/ZrO2-MCM-41 nanocomposites for photocatalytic reduction of Cr(VI)(Elsevier, 2017) Nanda, B.; Pradhan, A. C.; Parida, K. M.Mesoporous nanocomposites of CuO/ZrO2–MCM-41 (CuO@ZM-41) was designed by incorporating mesoporous ZrO2 (Z) into the high surface area MCM-41 (M-41) framework followed by loading CuO by wetness impregnation method keeping Si/Zr ratio 10. The nanocomposites were studied under PXRD, N2 sorption, DRS spectra, FTIR, XPS, NMR, HRTEM and PL to evaluate structural, morphological, optical properties and also the mesoporosity nature of the samples. The photo-reduction of Cr6+ was performed over CuO@ZM-41 by varying pH, substrate concentration, and irradiation time and catalyst dose. Among all the catalysts, 2 CuO@ZM-41 was found to be efficient photocatalyst for the photo-reduction of Cr6+. Nearly 100% reduction of Cr6+ has been achieved by 2 CuO@ZM-41 within 30 min. Intra-particle mesoporosity, high surface area, presence of CuO nanorods and electron transfer properties are the key factors for enhancing the photo-reduction activity of 2CuO@ZM-41.Item Open Access Hydrogenation of naphthalene and methylnaphthalene: modeling and spectroscopy(Elsevier BV, 2002) Sayan, Ş.; Paul, J.In situ infrared spectra of 1-methylnaphthalene (1-MeNapht)hydrogenation, over sulfided NiMo/Al2O3-TiO2 catalysts, were compared with theoretically derived properties of methylnaphthalene and its bicyclic products: MeDilin, MeTetralin, MeOctalin and MeDecalin, and with conversion data from literature. Comparisons were also made between the un-substituted and methyl-substituted two-rings, and between the 1- and 5-methyl isomers of 1,4-dihydronaphthalene (dilin) and 1,2,3,4-tetrahydronaphthalene (tetralin). IR spectra of MeNapht adsorption, on the sulfided catalyst, were matched with data for adsorption on the catalyst without sulfidation and the empty support. Surface bound MeNapht is observed below 250°C on all catalysts. MeNapht adsorption suppresses OH groups nondiscriminatory on the empty support and the metal loaded catalyst. We relate the results to previous data on the interaction between the supported metal sulfides and titanium modified aluminas. Calculated total energies, and experimentally derived heats of formation, pointed at decahydronaphthalene (decalin) as the dominant product of naphthalene hydrogenation, with tetralin as an abundant intermediate, and dilin and 1,2,3,4,5,6,7,8-octahydronaphthalene (octalin) as short lived transient stages. The spectroscopic modeling showed that the orbital fingerprints of the five bicyclic compounds were not distinctly different, nor more than marginally modified by methyl substitution or isomerization. The only significant difference came at the highest occupied orbital, where a high naphthalene density of states (DoS) overlapped with the valence bands of metal or metal sulfide catalysts. The vibrational bands for naphthalene, dilin, tetralin and octalin were well separated. Octalin and decalin, alone, have similar vibrational spectra. Upheaval of ring degeneracy for methyl-substituted two-ring structures broadened all infrared bands in a characteristic way.Item Open Access Investigation of local structure effect and X-ray absorption characteristics (EXAFS) of Fe (Ti) K-edge on photocatalyst properties of SrTi (1-x)Fe xO (3-δ)(2012) Ghaffari, M.; Liu, T.; Huang H.; Tan O.K.; Shannon, M.In this study, the STF x photocatalyst powder was synthesized with a high temperature solid state reaction. The microstructures and surface of samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electronic properties and local structure of the perovskite STF x (0 ≤ x ≤ 1) systems were probed by extended X-ray absorption fine structure (EXAFS) spectroscopy. The XPS results revealed that with increasing iron doping, the amount of Fe 3+ and Fe 4+ increased significantly. The X-ray absorption data are discussed in detail with respect to the Fe (Ti) K-edge. The substitution of iron by titanium increased the Ti (Fe)-O first shell disorder factors that can be explained by increasing the oxygen vacancies. Oxygen vacancies or defects act as electron traps, which could capture the photo induced electrons and thus could effectively inhibit the recombination of the photo induced electrons and holes. Moreover due to the substitution of Ti with Fe, lattice shrinkage was observed and the largest derivation from the Gaussian distribution in STF x was from those samples with x = 0.6 and x = 0.8. The substitution of iron by titanium increased the iron valence state, hence the formation of the Jahn-Teller Fe 4+ ion. With increasing iron dopant the [Ti(Fe)-O] ave decreased and bond length of [Ti-O] and the consequent [Ti-O-Ti] increased and this phenomenon affected the photocatalyst and photo degradation properties of material and also decreased its efficiency. © 2012 Elsevier B.V. All rights reserved.Item Open Access Metal dicyanamides as efficient and robust water-oxidation catalysts(Wiley Blackwell, 2017) Nune, S. V. K.; Basaran, A. T.; Ülker, E.; Mishra, R.; Karadas, F.Non-oxide cobalt-based water-oxidation electrocatalysts have received attention recently for their relative ease of preparation, they are stable both in acidic and basic media, and they have higher turnover frequencies than cobalt oxides. Recent studies show that one of the main bottlenecks in the implementation of non-oxide systems to water splitting is the low number of active metal sites, which is in the order of nmol cm−2. Herein, a new series of non-oxide water-oxidation catalysts has been introduced to the field. Cobalt dicyanamides are observed to have around four times higher surface active sites and better catalytic performances than cyanide-based systems. Long-term catalytic studies (70 h) at an applied potential of 1.2 V and electrochemical studies performed in solutions in pH values of 3.0–12.0 indicate that the compounds are robust and retain their structures even under harsh conditions. Moreover, the addition of Ni impurities to cobalt dicyanamides is a feasible method to improve their catalytic activities.Item Open Access Methyldecalin hydrocracking over palladium/zeolite-X(Elsevier Science Ltd, Exeter, United Kingdom, 2000) Sayan, S.; Demirel, B.; Paul, J.Hydrocracking of methyldecalin over Pd/REX has been studied with surface sensitive techniques in the critical temperature range 325– 3508C. Results from in situ characterization of adsorbed species, and post-reaction analysis of the catalyst surface by infrared and photoemission spectroscopies, were related to product distributions. The results are discussed in light of quantum chemical calculations of free and catalyst bound intermediates, following ring-opening reactions. Liquid and gaseous products were detected by infrared and UV/Vis spectroscopies. Apparent activation energies of product formation hydrogen consumption, over a broader temperature range, were derived from previous autoclave experiments. An increase in temperature, 325–3508C, results in a shift from preferred cracking products to aromatics, an enhanced level of light hydrocarbon off-gases, and a higher coverage of carbonaceous residues. The increased level of carbonaceous residues is accompanied by a lowered coverage of the reactant, at the surface. The altered product distribution can be characterized by apparent single activation energies, valid from 300 to 4508C. Methane and aromatics show a similar rapid increase with temperature, hydrogen consumption a more timid increase, indicating a reaction limited by diffusion, and cycloalkane production a modest inverse temperature dependence. Fully hydrogenated ring-opening products represent valuable fuel components, but hydrogen deficiency can instead lead to chemisorbed precursors to coke. Our calculations show that cyclohexane, 1,2-diethyl, 3-methyl has a lower heat of formation than the corresponding surface intermediates, but a small enthalpy advantage can easily be countered by entropy effects at higher temperatures. This balance is critical to the formation of preferred products, instead of catalyst deactivation and aromatics. The theoretical results further show that surface intermediates, where the terminating hydrogen is replaced by a C–O bond, have distinct vibrations around 1150 cm21. q2000 Elsevier Science Ltd. All rights reserved.Item Open Access NOx reduction on a transition metal-free γ-Al2O3 catalyst using dimethylether (DME)(2008) Ozensoy, E.; Herling, D.; Szanyi, J.NO2 and dimethylether (DME) adsorption as well as DME and NO2 co-adsorption on a transition metal-free γ-alumina catalyst were investigated via in-situ transmission Fourier transform infrared spectroscopy (in-situ FTIR), residual gas analysis (RGA) and temperature programmed desorption (TPD) techniques. NO2 adsorption at room temperature leads to the formation of surface nitrates and nitrites. DME adsorption on the alumina surface at 300 K leads to molecularly adsorbed DME, molecularly adsorbed methanol and surface methoxides. Upon heating the DME-exposed alumina to 500-600 K the surface is dominated by methoxide groups. At higher temperatures methoxide groups are converted into formates. At T > 510 K, formate decomposition takes place to form H2O(g) and CO(g). DME and NO2 co-adsorption at 423 K does not indicate a significant reaction between DME and NO2. However, in similar experiments at 573 K, fast reaction occurs and the methoxides present at 573 K before the NO2 adsorption are converted into formates, simultaneously with the formation of isocyanates. Under these conditions, NCO can further be hydrolyzed into isocyanic acid or ammonia with the help of water which is generated during the formate formation, decomposition and/or NCO formation steps. © 2008 Elsevier B.V. All rights reserved.Item Open Access One-dimensional copper (II) coordination polymer as an electrocatalyst for water oxidation(Wiley-VCH Verlag, 2017) Mishra, R.; Ülker, E.; Karadas, F.Although cobalt-based heterogeneous catalysts are the central focus in water oxidation research, interest in copper-based water oxidation catalysts has been growing thanks the great abundance of copper and its biological relevance. Several copper oxides have recently been reported to be active catalysts for water oxidation. In this study, a heterogeneous copper-based water oxidation catalyst that is not an oxide has been reported for the first time. Single-crystal XRD studies indicate that the compound is a one-dimensional coordination compound incorporating copper paddle-wheel units connected through phosphine dioxide ligands. The catalyst exhibits an onset potential of 372 mV at pH 10.2, whereas an overpotential of only 563 mV is required to produce a current density of 1 mA cm−2. In addition to cyclic voltammetric and chronoamperometric studies, an investigation into the effect of pH on the catalytic activity and the robustness of the catalyst using long-term bulk electrolysis (12 h) is presented.Item Open Access Photocatalytic conversion of nitric oxide on titanium dioxide: cryotrapping of reaction products for online monitoring by mass spectrometry(American Chemical Society, 2016) Lu, W.; Olaitan, A. D.; Brantley, M. R.; Zekavat, B.; Erdogan, D. A.; Ozensoy, E.; Solouki, T.Details of coupling a catalytic reaction chamber to a liquid nitrogen-cooled cryofocuser/triple quadrupole mass spectrometer for online monitoring of nitric oxide (NO) photocatalytic reaction products are presented. Cryogenic trapping of catalytic reaction products, via cryofocusing prior to mass spectrometry analysis, allows unambiguous characterization of nitrous oxide (N2O) and nitrogen oxide species (i.e., NO and nitrogen dioxide (NO2)) at low concentrations. Results are presented, indicating that the major photocatalytic reaction product of NO in the presence of titanium dioxide (TiO2) P25 and pure anatase catalysts when exposed to ultraviolet (UV) light (at a wavelength of 365 nm) is N2O. However, in the presence of rutile-rich TiO2 catalyst and UV light, the conversion of NO to N2O was less than 5% of that observed with the P25 or pure anatase TiO2 catalysts.Item Open Access Polymeric nanofibers decorated with reduced graphene oxide nanoflakes(Elsevier, 2017) Ranjith, K. S.; Uyar, TamerResearch into graphene-polymeric based membranes by tuning its structural and functional properties will facilitate new opportunities on these hierarchical platforms. The objective is to play a role on the external skin of the polymeric nanofibers to enhance it structural and functional properties by introducing thin layered graphene oxide flakes to improve the absorption behavior, and to modulate the mechanical and electronic properties and more. By modifying the polymers and including some metal nanostructures within the graphene functionality may lead to the development of complex hybrid system for advanced applicability in fields such as catalyst, electronics, sensing, storage based devices, etc. Constructing the graphenebased systems with polymeric membranes having unique architecture and functionality will provide innovation in materials science in related fields. The hierarchical arrangement of reduced graphene oxide-polymeric membrane can play a key role in multifunctional application in the fields of electronics, catalysts, and sensors.Item Open Access Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications(American Chemical Society, 2007-10) Kang, S. J.; Kocabaş, Coşkun; Kim, H.-S.; Cao, Q.; Meitl, M. A.; Khang, D.-Y.; Rogers, J. A.We developed means to form multilayer superstructures of large collections of single-walled carbon nanotubes (SWNTs) configured in horizontally aligned arrays, random networks, and complex geometries of arrays and networks on a wide range of substrates. The approach involves guided growth of SWNTs on crystalline and amorphous substrates followed by sequential, multiple step transfer of the resulting collections of tubes to target substrates, such as high-k thin dielectrics on silicon wafers, transparent plates of glass, cylindrical tubes and other curved surfaces, and thin, flexible sheets of plastic. Electrical measurements on dense, bilayer superstructures, including crossbars, random networks, and aligned arrays on networks of SWNTs reveal some important characteristics of representative systems. These and other layouts of SWNTs might find applications not only in electronics but also in areas such as optoelectronics, sensors, nanomechanical systems, and microfluidics.Item Open Access Rational synthesis of Na and S co-catalyst TiO2-based nanofibers: presence of surface-layered TiS3 shell grains and sulfur-induced defects for efficient visible-light driven photocatalysis(Royal Society of Chemistry, 2017) Ranjith, K. S.; Uyar, TamerSurface-modified TiO2 nanofibers (NFs) with tunable visible-light photoactive catalysts were synthesised through electrospinning, followed by a sulfidation process. The utilization of sodium-based sulfidation precursors effectively led to the diffusion and integration of sulfur impurities into TiO2, modifying its band function. The optical band function of the sulfur-modified TiO2 NFs can be easily manipulated from 3.17 eV to 2.28 eV through surface modification, due to the creation of oxygen vacancies through the sulfidation process. Sulfidating TiO2 NFs introduces Ti-S-based nanograins and oxygen vacancies on the surface that favor the TiO2-TiS3 core-shell interface. These defect states extend the photocatalytic activity of the TiO2 NFs under visible irradiation and improve effective carrier separation and the production of reactive oxygen species. The surface oxygen vacancies and the Ti-S-based surface nanograins serve as charge traps and act as adsorption sites, improving the carrier mobility and avoiding charge recombination. The diffused S-modified TiO2 NFs exhibit a degradation rate of 0.0365 cm-1 for RhB dye solution, which is 4.8 times higher than that of pristine TiO2 NFs under visible irradiation. By benefiting from the sulfur states and oxygen vacancies, with a narrowed band gap of 2.3 eV, these nanofibers serve as suitable localized states for effective carrier separation.Item Open Access Selective isolation of the electron or hole in photocatalysis: ZnO–TiO2 and TiO2–ZnO core–shell structured heterojunction nanofibers via electrospinning and atomic layer deposition(Royal Society of Chemistry, 2014-02-06) Kayaci, F.; Vempati S.; Ozgit Akgun, C.; Donmez, I.; Bıyıklı, Necmi; Uyar, TamerHeterojunctions are a well-studied material combination in photocatalysis studies, the majority of which aim to improve the efficacy of the catalysts. Developing novel catalysts begs the question of which photo-generated charge carrier is more efficient in the process of catalysis and the associated mechanism. To address this issue we have fabricated core-shell heterojunction (CSHJ) nanofibers from ZnO and TiO2 in two combinations where only the 'shell' part of the heterojunction is exposed to the environment to participate in the photocatalysis. Core and shell structures were fabricated via electrospinning and atomic layer deposition, respectively which were then subjected to calcination. These CSHJs were characterized and studied for photocatalytic activity (PCA). These two combinations expose electrons or holes selectively to the environment. Under suitable illumination of the ZnO-TiO 2 CSHJ, e/h pairs are created mainly in TiO2 and the electrons take part in catalysis (i.e. reduce the organic dye) at the conduction band or oxygen vacancy sites of the 'shell', while holes migrate to the core of the structure. Conversely, holes take part in catalysis and electrons diffuse to the core in the case of a TiO2-ZnO CSHJ. The results further revealed that the TiO2-ZnO CSHJ shows ∼1.6 times faster PCA when compared to the ZnO-TiO2 CSHJ because of efficient hole capture by oxygen vacancies, and the lower mobility of holes.Item Open Access Sulfur-tolerant BaO/ZrO2/TiO2/Al2O3 quaternary mixed oxides for deNOX catalysis(Royal Society of Chemistry, 2017) Say, Z.; Mihai, O.; Tohumeken, M.; Ercan, K. E.; Olsson, L.; Ozensoy, E.Advanced quaternary mixed oxide materials in the form of BaO/Al2O3/ZrO2/TiO2 functionalized with Pt active sites (i.e. Pt/BaO/AZT) were synthesized and structurally characterized via XRD and BET in comparison to a conventional Pt/20BaO/Al benchmark NSR/LNT catalyst. The interactions of these catalysts' surfaces with SOx and NOx gases were monitored via in situ FTIR and TPD. There exists a delicate trade-off between NOx storage capacity (NSC) and sulfur uptake/poisoning which is strongly governed by the BaO loading/ dispersion as well as the surface structure and acidity of the support material. Flow reactor measurements performed under realistic catalytic conditions show the high NOx activity for the Pt/20BaO/AZT catalyst at 573 K. After sulfur poisoning and subsequent regeneration at 773 and 973 K, Pt/20BaO/AZT surpassed the NOx catalytic performance at 573 K of all other investigated materials including the conventional Pt/ 20BaO/Al benchmark catalyst.Item Open Access Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium(American Physical Society, 2005) Yildirim, T.; Çıracı, SalimWe report a first-principles study, which demonstrates that a single Ti atom coated on a single-walled nanotube (SWNT) binds up to four hydrogen molecules. The first H2 adsorption is dissociative with no energy barrier while the other three adsorptions are molecular with significantly elongated H-H bonds. At high Ti coverage we show that a SWNT can strongly adsorb up to 8 wt% hydrogen. These results advance our fundamental understanding of dissociative adsorption of hydrogen in nanostructures and suggest new routes to better storage and catalyst materials.