Browsing by Subject "Catalyst poisoning"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Platinum-palladium loaded polypyrrole film electrodes for the electrooxidation of D-glucose in neutral media(Elsevier Sequoia SA, Lausanne, Switzerland, 1999) Becerik, İ.; Süzer, Ş.; Kadirgan, F.Modified polymer films with metal particles incorporated into the films by electrodeposition are known as possible electrocatalysts for various electrode reactions such as fuel cell applications. This work presents some results concerning the electrooxidation of D-glucose at modified polymer film electrodes prepared on a platinum substrate. This reaction has a great deal of interest in view of its applications to detection systems (glucose sensor), fuel cells (pacemakers) and electroorganic systhesis. The modified polymer film electrodes contain platinum and/or palladium particles dispersed in the polypyrrole film by electrodeposition in neutral media. Addition of palladium to platinum modifies the electrocatalytic behaviour of the electrode drastically. The modification is thought to involve minimization of the poisoning of the catalyst, hence increasing its electrode activity.Item Open Access Sulfur poisoning and regeneration behavior of perovskite-based NO oxidation catalysts(Springer New York LLC, 2017) Kurt M.; Say, Z.; Ercan, K. E.; Vovk, E. I.; Kim, C. H.; Ozensoy, E.SOxuptake and release properties of LaMnO3, Pd/LaMnO3, LaCoO3and Pd/LaCoO3perovskites were investigated via in situ Fourier transform infrared (FTIR) spectroscopy, temperature programmed desorption and X-ray photoelectron spectroscopy. Sulfation of the perovskite leads to the formation of surface sulfite/sulfate and bulk-like sulfate species. Pd addition to LaMnO3and LaCoO3significantly increases the sulfur adsorption capacity. Pd/LaMnO3sample accumulates significantly more sulfur than LaMnO3; however it can also release a larger fraction of the accumulated SOxspecies in a reversible fashion at elevated temperatures in vacuum. This is not the case for Co-based materials, where thermal regeneration of bulk sulfates on poisoned LaCoO3and Pd/LaCoO3is extremely ineffective under similar conditions. However, in the presence of an external reducing agent such as H2(g), Pd/LaMnO3requires much lower temperature (873�K) for complete sulfur regeneration as compared to that of Pd/LaCoO3(973�K). Sequential CO and SOxadsorption experiments performed via in situ FTIR indicate that in the presence of carbonyls and/or carbonates, Pd adsorption sites may have a stronger affinity for SOxas compared to that of the perovskite surface, particularly in the early stages of sulfur poisoning.Item Open Access Sulfur-tolerant BaO/ZrO2/TiO2/Al2O3 quaternary mixed oxides for deNOX catalysis(Royal Society of Chemistry, 2017) Say, Z.; Mihai, O.; Tohumeken, M.; Ercan, K. E.; Olsson, L.; Ozensoy, E.Advanced quaternary mixed oxide materials in the form of BaO/Al2O3/ZrO2/TiO2 functionalized with Pt active sites (i.e. Pt/BaO/AZT) were synthesized and structurally characterized via XRD and BET in comparison to a conventional Pt/20BaO/Al benchmark NSR/LNT catalyst. The interactions of these catalysts' surfaces with SOx and NOx gases were monitored via in situ FTIR and TPD. There exists a delicate trade-off between NOx storage capacity (NSC) and sulfur uptake/poisoning which is strongly governed by the BaO loading/ dispersion as well as the surface structure and acidity of the support material. Flow reactor measurements performed under realistic catalytic conditions show the high NOx activity for the Pt/20BaO/AZT catalyst at 573 K. After sulfur poisoning and subsequent regeneration at 773 and 973 K, Pt/20BaO/AZT surpassed the NOx catalytic performance at 573 K of all other investigated materials including the conventional Pt/ 20BaO/Al benchmark catalyst.