Browsing by Subject "Carcinoma"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Diagnosis of gastric carcinoma by classification on feature projections(Elsevier, 2004) Güvenir, H. A.; Emeksiz, N.; İkizler, N.; Örmeci, N.A new classification algorithm, called benefit maximizing classifier on feature projections (BCFP), is developed and applied to the problem of diagnosis of gastric carcinoma. The domain contains records of patients with known diagnosis through gastroscopy results. Given a training set of such records, the BCFP classifier learns how to differentiate a new case in the domain. BCFP represents a concept in the form of feature projections on each feature dimension separately. Classification in the BCFP algorithm is based on a voting among the individual predictions made on each feature. In the gastric carcinoma domain, a lesion can be an indicator of one of nine different levels of gastric carcinoma, from early to late stages. The benefit of correct classification of early levels is much more than that of late cases. Also, the costs of wrong classifications are not symmetric. In the training phase, the BCFP algorithm learns classification rules that maximize the benefit of classification. In the querying phase, using these rules, the BCFP algorithm tries to make a prediction maximizing the benefit. A genetic algorithm is applied to select the relevant features. The performance of the BCFP algorithm is evaluated in terms of accuracy and running time. The rules induced are verified by experts of the domain. © 2004 Elsevier B.V. All rights reserved.Item Open Access Differential expression of colon cancer associated transcript1 (CCAT1) along the colonic adenoma-carcinoma sequence(BioMed Central, 2013) Alaiyan, B.; Ilyayev, N.; Stojadinovic, A.; Izadjoo, M.; Roistacher, M.; Pavlov, V.; Tzivin, V.; Halle, D.; Pan, H.; Trink, B.; Gure, A. O.; Nissan, A.Background: The transition from normal epithelium to adenoma and, to invasive carcinoma in the human colon is associated with acquired molecular events taking 5-10 years for malignant transformation. We discovered CCAT1, a non-coding RNA over-expressed in colon cancer (CC), but not in normal tissues, thereby making it a potential disease-specific biomarker. We aimed to define and validate CCAT1 as a CC-specific biomarker, and to study CCAT1 expression across the adenoma-carcinoma sequence of CC tumorigenesis.Methods: Tissue samples were obtained from patients undergoing resection for colonic adenoma(s) or carcinoma. Normal colonic tissue (n = 10), adenomatous polyps (n = 18), primary tumor tissue (n = 22), normal mucosa adjacent to primary tumor (n = 16), and lymph node(s) (n = 20), liver (n = 8), and peritoneal metastases (n = 19) were studied. RNA was extracted from all tissue samples, and CCAT1 expression was analyzed using quantitative real time-PCR (qRT-PCR) with confirmatory in-situ hybridization (ISH).Results: Borderline expression of CCAT1 was identified in normal tissue obtained from patients with benign conditions [mean Relative Quantity (RQ) = 5.9]. Significant relative CCAT1 up-regulation was observed in adenomatous polyps (RQ = 178.6 ± 157.0; p = 0.0012); primary tumor tissue (RQ = 64.9 ± 56.9; p = 0.0048); normal mucosa adjacent to primary tumor (RQ = 17.7 ± 21.5; p = 0.09); lymph node, liver and peritoneal metastases (RQ = 11,414.5 ± 12,672.9; 119.2 ± 138.9; 816.3 ± 2,736.1; p = 0.0001, respectively). qRT-PCR results were confirmed by ISH, demonstrating significant correlation between CCAT1 up-regulation measured using these two methods.Conclusion: CCAT1 is up-regulated across the colon adenoma-carcinoma sequence. This up-regulation is evident in pre-malignant conditions and through all disease stages, including advanced metastatic disease suggesting a role in both tumorigenesis and the metastatic process. © 2013 Alaiyan et al.; licensee BioMed Central Ltd.Item Open Access Genetics and epigenetics of liver cancer(Elsevier, 2013) Özen, Çiğdem; Yıldız, Gökhan; Dağcan, Alper Tunga; Çevik, Dilek; Örs, Ayşegül; Keleş, Umut; Topel, Hande; Öztürk, MehmetHepatocellular carcinoma (HCC) represents a major form of primary liver cancer in adults. Chronic infections with hepatitis B (HBV) and C (HCV) viruses and alcohol abuse are the major factors leading to HCC. This deadly cancer affects more than 500,000 people worldwide and it is quite resistant to conventional chemo- and radiotherapy. Genetic and epigenetic studies on HCC may help to understand better its mechanisms and provide new tools for early diagnosis and therapy. Recent literature on whole genome analysis of HCC indicated a high number of mutated genes in addition to well-known genes such as TP53, CTNNB1, AXIN1 and CDKN2A, but their frequencies are much lower. Apart from CTNNB1 mutations, most of the other mutations appear to result in loss-of-function. Thus, HCC-associated mutations cannot be easily targeted for therapy. Epigenetic aberrations that appear to occur quite frequently may serve as new targets. Global DNA hypomethylation, promoter methylation, aberrant expression of non-coding RNAs and dysregulated expression of other epigenetic regulatory genes such as EZH2 are the best-known epigenetic abnormalities. Future research in this direction may help to identify novel biomarkers and therapeutic targets for HCC.Item Open Access A new triazolothiadiazine derivative inhibits stemness and induces cell death in HCC by oxidative stress dependent JNK pathway activation(Nature Research, 2022-09-07) Kahraman, Deniz Cansen; Bilget Guven, Ebru; Aytac, Peri S.; Aykut, Gamze; Tozkoparan, Birsen; Cetin Atalay, RengulHepatocellular carcinoma (HCC) is a highly heterogeneous cancer, and resistant to both conventional and targeted chemotherapy. Recently, nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to decrease the incidence and mortality of different types of cancers. Here, we investigated the cellular bioactivities of a series of triazolothiadiazine derivatives on HCC, which have been previously reported as potent analgesic/anti-inflammatory compounds. From the initially tested 32 triazolothiadiazine NSAID derivatives, 3 compounds were selected based on their IC50 values for further molecular assays on 9 different HCC cell lines. 7b, which was the most potent compound, induced G2/M phase cell cycle arrest and apoptosis in HCC cells. Cell death was due to oxidative stress-induced JNK protein activation, which involved the dynamic involvement of ASK1, MKK7, and c-Jun proteins. Moreover, 7b treated nude mice had a significantly decreased tumor volume and prolonged disease-free survival. 7b also inhibited the migration of HCC cells and enrichment of liver cancer stem cells (LCSCs) alone or in combination with sorafenib. With its ability to act on proliferation, stemness and the migration of HCC cells, 7b can be considered for the therapeutics of HCC, which has an increased incidence rate of ~ 3% annually. © 2022, The Author(s).Item Open Access Synthesis of novel 6-(4-substituted piperazine-1-yl)-9-(β-dribofuranosyl)purine derivatives, which lead to senescence-induced cell death in liver cancer cells(ACS, 2012) Tunçbilek, M.; Güven, Ebru Bilget; Önder, T.; Çetin-Atalay, RengülNovel purine ribonucleoside analogues (9-13) containing a 4-substituted piperazine in the substituent at N-6 were synthesized and evaluated for their cytotoxicity on Huh7, HepG2, FOCUS, Mahlavu liver, MCF7 breast, and HCT116 colon carcinoma cell lines. The purine nucleoside analogues were analyzed initially by an anticancer drug-screening method based on a sulforhodamine B assay. Two nucleoside derivatives with promising cytotoxic activities (11 and 12) were further analyzed on the hepatoma cells. The N-6-(4-Trifluoromethylphenyl)piperazine analogue 11 displayed the best antitumor activity, with IC50 values between 5.2 and 9.2 mu M. Similar to previously described nucleoside analogues, compound 11 also interferes with cellular ATP reserves, possibly through influencing cellular kinase activities. Furthermore, the novel nucleoside analogue 11 was shown to induce senescence-associated cell death, as demonstrated by the SA beta-gal assay. The senescence-dependent cytotoxic effect of 11 was also confirmed through phosphorylation of the Rb protein by p15(INK4b) overexpression in the presence of this compound.