Browsing by Subject "Capacity constraints"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Capacitated assortment optimization and pricing problems under mixed multinomial logit model(2016-08) Ghaniabadi, MehdiWe study capacitated assortment optimization problem under mixed multinomial logit model where a retailer wants to choose the set of products to offer to various customer segments with the goal of maximizing revenue while satisfying different capacity constraints. Each customer segment is identiffed with a unique purchase behaviour modelled by multinomial logit demand. We consider three general cases of capacity constraints: single resource constraint, multiple resource constraints and multiple cardinality constraints. This problem is NP-hard and there exist two approaches to find exact solutions: formulating the problem as a mixed integer linear program (MILP) or a mixed integer conic quadratic program (CONIC). For each constraint structure, we develop new efficient procedures to derive McCormick valid inequalities. We provide extensive numerical studies the results of which demonstrate that when the CONIC model is accompanied with the McCormick inequalities, the problem can be solved effectively even for large sized instances using a commercial optimization software. We also study joint pricing and assortment optimization problem with a single cardinality constraint and establish a new procedure to construct McCormick inequalities. We then present the related numerical studies which indicate that the CONIC formulation accomplishes the best outcome in the presence of the McCormick inequalities.Item Open Access Constrained min-cut replication for K-way hypergraph partitioning(Institute for Operations Research and the Management Sciences (I N F O R M S), 2014) Yazici V.; Aykanat, CevdetReplication is a widely-used technique in information retrieval and database systems for providing fault tolerance and reducing parallelization and processing costs. Combinatorial models based on hypergraph partitioning are proposed for various problems arising in information retrieval and database systems. We consider the possibility of using vertex replication to improve the quality of hypergraph partitioning. In this study, we focus on the constrained min-cut replication (CMCR) problem, where we are initially given a maximum replication capacity and a K-way hypergraph partition with an initial imbalance ratio. The objective in the CMCR problem is finding the optimal vertex replication sets for each part of the given partition such that the initial cut size of the partition is minimized, where the initial imbalance is either preserved or reduced under the given replication capacity constraint. In this study, we present a complexity analysis of the CMCR problem and propose a model based on a unique blend of coarsening and integer linear programming (ILP) schemes. This coarsening algorithm is derived from a novel utilization of the Dulmage-Mendelsohn decomposition. Experiments show that the ILP formulation coupled with the Dulmage-Mendelsohn decomposition-based coarsening provides high quality results in practical execution times for reducing the cut size of a given K-way hypergraph partition. © 2014 INFORMS.Item Open Access Solving school bus routing problems through integer programming(Palgrave Macmillan Ltd., 2007) Bektaş, T.; Elmastaş, S.In this paper, an exact solution approach is described for solving a real-life school bus routing problem (SBRP) for transporting the students of an elementary school throughout central Ankara, Turkey. The problem is modelled as a capacitated and distance constrained open vehicle routing problem and an associated integer linear program is presented. The integer program borrows some well-known inequalities from the vehicle routing problem, which are also shown to be valid for the SBRP under consideration. The optimal solution of the problem is computed using the proposed formulation, resulting in a saving of up to 28.6 in total travelling cost as compared to the current implementation. © 2007 Operational Research Society Ltd. All rights reserved.