Browsing by Subject "Canonical problems"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Efficient solution of the combined-field integral equation with the parallel multilevel fast multipole algorithm(IEEE, 2007-08) Gürel, Levent; Ergül, ÖzgürWe present fast and accurate solutions of large-scale scattering problems formulated with the combined-field integral equation. Using the multilevel fast multipole algorithm (MLFMA) parallelized on a cluster of computers, we easily solve scattering problems that are discretized with tens of millions of unknowns. For the efficient parallelization of MLFMA, we propose a hierarchical partitioning scheme based on distributing the multilevel tree among the processors with an improved load-balancing. The accuracy of the solutions is demonstrated on scattering problems involving spheres of various radii from 80λ to 110λ. In addition to canonical problems, we also present the solution of real-life problems involving complicated targets with large dimensions. © 2007 IEEE.Item Open Access Solution of large-scale scattering problems with the multilevel fast multipole algorithm parallelized on distributed-memory architectures(IEEE, 2007) Ergül, Özgür; Gürel, LeventWe present the solution of large-scale scattering problems involving three-dimensional closed conducting objects with arbitrary shapes. With an efficient parallelization of the multilevel fast multipole algorithm on relatively inexpensive computational platforms using distributed-memory architectures, we perform the iterative solution of integral-equation formulations that are discretized with tens of millions of unknowns. In addition to canonical problems, we also present the solution of real-life problems involving complicated targets with large dimensions.Item Open Access Spherical wave representation of the dyadic Green's function for a spherical impedance boss at the edge of a perfectly conducting wedge(Electromagnetics Academy, 2012) Ghassemiparvin, Behnam; Altıntaş, AyhanIn this work, canonical problem of a scatterer at the edge of a wedge is considered and eigenfunction solution is developed. Initially, a dyadic Green's function for a spherical impedance boss at the edge of a perfect electrically conducting (PEC) wedge is obtained. Since scattering from objects at the edge is of interest, a three-dimensional Green's function is formulated in terms of spherical vector wave functions. First, an incomplete dyadic Green's function is expanded in terms of solenoidal vector wave functions with unknown coefficients, which is not valid in the source region. Unknown coefficients are calculated by utilizing the Green's second identity and orthogonality of the vector wave functions. Then, the solution is completed by adding general source correction term. Resulting Green's function is decomposed into two parts. First part is the dyadic Green's function of the wedge in the absence of the sphere and the second part represents the effects of the spherical boss and the interaction between the wedge and the scatterer. In contrast to cylindrical vector wave function expansions and asymptotic solutions which fail to converge in the paraxial region, proposed solution exhibits good convergence everywhere in space. Using the developed Green's function scattered field patterns are obtained for several impedance values and results are compared with those of a PEC spherical boss. Effects of the incident angle and surface impedance of the boss on the scattering pattern are also examined.