Browsing by Subject "C-H activation"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Bimetallic hydroxide catalysts for aerobic C-H activation(2024-01) Erdivan, BeyzanurThe increasing interest in the oxidation of sp3 C-H and O-H bonds has garnered tremendous attention due to its potential for facile production of oxygenated organics. Precious metal-free bimetallic hydroxide-based materials are commonly employed in various applications such as batteries and photocatalysts. However, their prospects in C-H activation reactions have been poorly explored. This research focuses on the development and evaluation of a bimetallic Fe-Mn hydroxide catalyst for aerobic C-H activation and O-H oxidation reactions without the need for an initiator. The Fe-Mn hydroxide catalyst was synthesized and carefully optimized to enhance its catalytic efficiency in the direct oxygenation of a wide scope of alkylarene compounds through C-H functionalization and oxidation of benzylic alcohols. A series of Fe-Mn bimetal hydroxides with different Fe/Mn ratios were synthesized using a customized chemical co-precipitation method. These catalysts were then tested for the catalytic oxidation of fluorene to fluorenone using molecular oxygen as the sole oxidant, with the Fe0.6Mn0.4(OH)y-12S catalyst demonstrating the best performance. Under mild reaction conditions, the catalyst exhibited remarkable performance in activating C-H bonds using molecular oxygen as the oxidant. Various substrates, including alkylarenes and alcohols, were investigated, consistently yielding high yields of oxygenated products with minimal catalyst loadings. XRD, XPS, XANES, ICP-MS, BET, and TGA were employed to gain insights into the structural features of the catalyst. Our findings indicate that the following structural properties of the optimized Fe0.6Mn0.4(OH)y-12S catalyst could be responsible for the currently observed enhanced catalytic reactivity: i) unique Mn oxidation state (ca. Mn2.6+), ii) Fe cationic sites containing a mixture of Fe2+ and Fe3+ species, where Fe3+ species are the dominating species, iii)realtively low specific surface area of 68 m2/g, iv) relatively disordered and defective crystal structure comprised of bimetallic hydroxides as well as additional oxide/oxyhydroxide phases, v) residual Na+ surface species enabling electronic promotion of the cationic active sites via electron donation.