Browsing by Subject "Branch and price"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A branch and price approach for routing and refueling station location model(Elsevier, 2016) Yıldız, B.; Arslan, O.; Karaşan, O. E.The deviation flow refueling location problem is to locate p refueling stations in order to maximize the flow volume that can be refueled respecting the range limitations of the alternative fuel vehicles and the shortest path deviation tolerances of the drivers. We first provide an enhanced compact model based on a combination of existing models in the literature for this relatively new operations research problem. We then extend this problem and introduce the refueling station location problem which adds the routing aspect of the individual drivers. Our proposed branch and price algorithm relaxes the simple path assumption generally adopted in the existing studies and implicitly takes into account deviation tolerances without the pregeneration of the routes. Therefore, the decrease in solution times with respect to existing models is significant and our algorithm scales very efficiently to more realistic network dimensions.Item Open Access A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations(Elsevier Ltd, 2017) Ozbaygin G.; Ekin Karasan O.; Savelsbergh M.; Yaman, H.We study the vehicle routing problem with roaming delivery locations in which the goal is to find a least-cost set of delivery routes for a fleet of capacitated vehicles and in which a customer order has to be delivered to the trunk of the customer's car during the time that the car is parked at one of the locations in the (known) customer's travel itinerary. We formulate the problem as a set-covering problem and develop a branch-and-price algorithm for its solution. The algorithm can also be used for solving a more general variant in which a hybrid delivery strategy is considered that allows a delivery to either a customer's home or to the trunk of the customer's car. We evaluate the effectiveness of the many algorithmic features incorporated in the algorithm in an extensive computational study and analyze the benefits of these innovative delivery strategies. The computational results show that employing the hybrid delivery strategy results in average cost savings of nearly 20% for the instances in our test set. © 2017 Elsevier LtdItem Open Access Provisioning virtual private networks under traffic uncertainty(Wiley, 2007) Altın, Ayşegül; Amaldi, E.; Belotti, P.; Pınar, Mustafa ÇelebiWe investigate a network design problem under traffic uncertainty that arises when provisioning Virtual Private Networks (VPNs): given a set of terminals that must communicate with one another, and a set of possible traffic matrices, sufficient capacity has to be reserved on the links of the large underlying public network to support all possible traffic matrices while minimizing the total reservation cost. The problem admits several versions depending on the desired topology of the reserved links, and the nature of the traffic data uncertainty. We present compact linear mixed-integer programming formulations for the problem with the classical hose traffic model and for a less conservative robust variant relying on the traffic statistics that are often available. These flow-based formulations allow us to solve optimally medium-to-large instances with commercial MIP solvers. We also propose a combined branch-and-price and cutting-plane algorithm to tackle larger instances. Computational results obtained for several classes of instances are reported and discussed.